Reconfigurable Space Computing

Dr. Brock J. LaMeres

Associate Professor Electrical & Computer Engineering Montana State University

College of ENGINEERING

Outline

1. Research Statement

• Enabling Reconfigurable Computing for Aerospace

2. Radiation Effects in Electronics

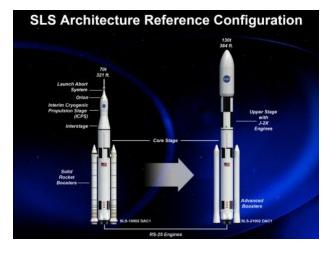
- Sources & Types of Radiation
- Effects (TID, SEE, Displacement Damage)
- FPGA Specific Effects

3. Existing Mitigation Techniques

- Physical (Shielding, RHBD, RHBP)
- Architectural (TMR, Scrubbing, Error Correction Codes)

4. MSU's Approach

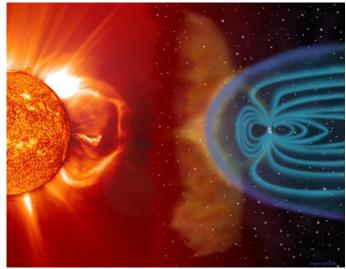
- Redundant Tiles (TMR+Spares+Scubbing)
- Prototyping
- Test Flights (Local Balloons, HASP, Future Sub-orbital)



Support the Computing Needs of Space Exploration & Science

- Computation (2,000 MIPs)
- Power Efficiency (200 MIPs/Watt)
- Mass (\$100/lb by 2025)
- Reliability (99.99999% reliable, instant recovery during critical operation)

Space Launch System (SLS)



Provide a Radiation Tolerant Platform for Reconfigurable Computing

- Reconfigurable Computing as a means to provide:
 - Increased Computation of Flights Systems
 - Reduced Power of Flight Systems
 - Reduced Mass of Flight Hardware
 - Mission Flexibility through Real-Time Hardware Updates
- Support FPGA-based Reconfigurable Computing through an underlying architecture with inherent radiation tolerance to Single Event Effects

The Future

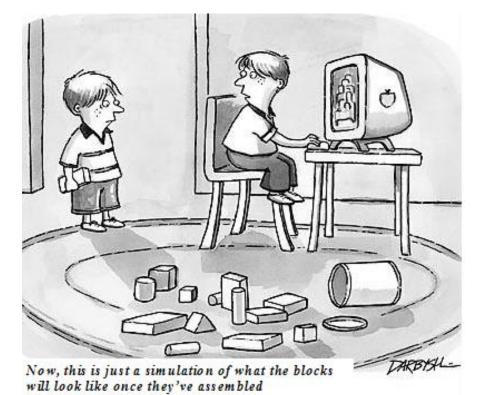
Let's start with what is <u>NOT</u> Reconfigurable Computing

- A CPU/GPU while you have flexibility via programming, the hardware is still fixed
 - o The instructions that can be executed are fixed in the sequence controller
 - o The size of memory is pre-defined
 - $\circ~$ The IO is pre-defined
- An ASIC the hardware is fixed during fabrication.

Are There <u>Advantages</u> to these Conventional Systems?

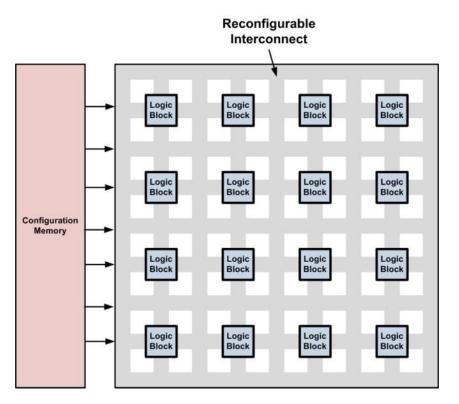
- Yes, they are well understood and easy to program (particularly the single core model)
- Yes, when the task maps well to the hardware, they have high performance (e.g., GPU)
- Yes, they can handle a large array of tasks (albeit sometimes in a inefficient manner)

Are There <u>Disadvantages</u> to these Conventional Systems?


- Yes, unless the task does not map directly to the hardware, they perform poorly.
- Yes, much of the hardware that allows them to handle a variety of tasks sits idle most of the time.

A System That Alters Its Hardware as a Normal Operating Procedure

- This can be done in real-time or at compile time.
- This can be done on the full-chip, or just on certain portions.
- Changing the hardware allows it to be optimized for the application at hand.



What Technology is used for RC?

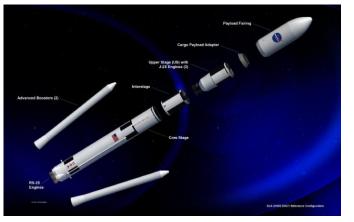
Field Programmable Gate Arrays (FPGA)

- Currently the most attractive option.
- SRAM-based FPGAs give the most flexibility
- Riding Moore's Law feature shrinkage

What are the Advantages of RC?

Computational Performance

- Optimizing the hardware for the task-at hand = architectural advantages
- Eliminating unused circuitry (minimize place/route area, reduces wiring delay)


Reduced Power

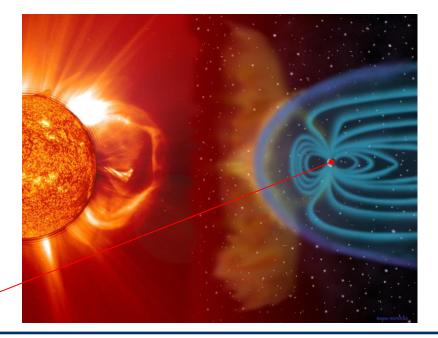
- Implement only the required circuitry
- · Shutdown or un-program unused circuitry when not in use

Reduced Mass

- Reuse a common platform to conduct multiple sequential tasks in flight systems
- This effect is compounded when considering each flight system has backup hardware
- · Mass is the dominant driver of cost for space applications
 - \$10,000/lb to get into orbit.
 - NASA's goal is \$100/lb by 2025
 - Shuttle cost ~\$300-\$500M per launch with 50,000 lb capacity

A Sequence of Unique Tasks

On Earth Our Computers are Protected


- Our magnetic field deflects the majority of the radiation
- Our atmosphere attenuates the radiation that gets through our magnetic field

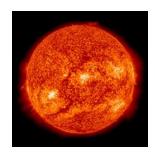
Our Satellites Operate In Trapped Radiation in the Van Allen Belts

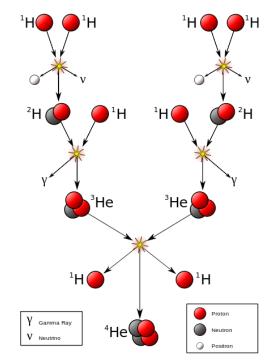
High flux of trapped electrons and protons

In Deep Space, Nothing is Protected

- Radiation from our sun
- · Radiation from other stars
- Particles & electromagnetic

You Are Here

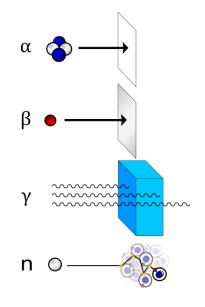


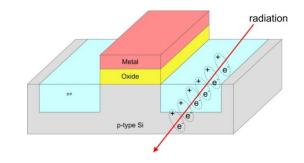


Where Does Space Radiation Come From?

- Nuclear fusion in stars creates light and heavy ions + EM
- Stars consists of an abundant amount of Hydrogen (¹H = 1 Proton) at high temperatures held in place by gravity
 - 1. The strong nuclear force pulls two Hydrogen (¹H) atoms together overcoming the Columns force and fuses them into a new nucleus
 - The new nucleus contains 1 proton + 1 neutron
 - This new nucleus is called *Deuterium (D)* or *Heavy Hydrogen* (²H)
 - Energy is given off during this reaction in the form of a Positron and a Neutrino
 - 2. The Deuterium (²H) then fuses with Hydrogen (¹H) again to form yet another new nucleus
 - This new nucleus contains 2 protons + 1 neutron
 - This nucleus is called *Tritium* or Hydrogen-3 (³H)
 - Energy is given off during this reaction in the form of a Gamma Ray
 - 3. Two Tritium nuclei then fuse to form a Helium nucleus
 - The new Helium nucleus (⁴H) contains 2 protons + 2 neutrons
 - Energy is given off in the form of Hydrogen (e.g., protons)

Radiation Categories

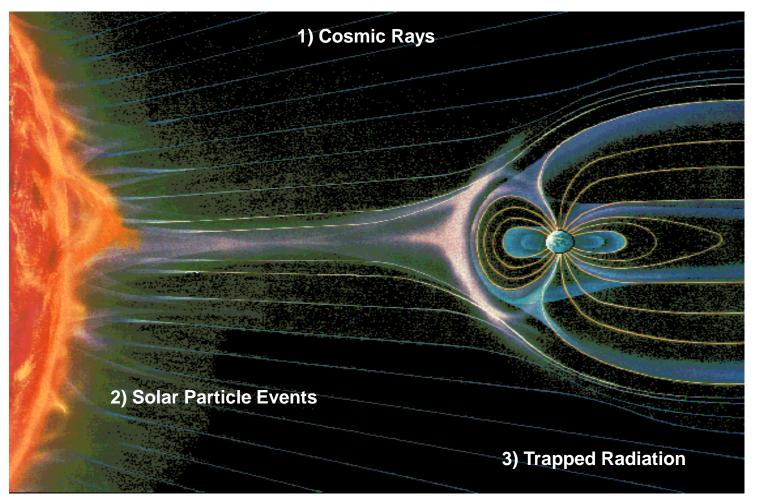

- 1. Ionizing Radiation
 - Sufficient energy to remove electrons from atomic orbit
 - Ex. High energy photons, charged particles
- 2. Non-Ionizing Radiation
 - o Insufficient energy/charge to remove electrons from atomic orbit
 - Ex., microwaves, radio waves


Types of Ionizing Radiation

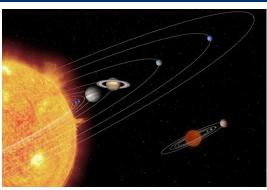
- 1. Gamma & X-Rays (photons)
 - Sufficient energy in the high end of the UV spectrum
- 2. Charged Particles
 - Electrons, positrons, protons, alpha, beta, heavy ions
- 3. Neutrons
 - No electrical charge but ionize indirectly through collisions

What Type are Electronics Sensitive To?

- · Ionization which causes electrons to be displaced
- Particles which collide and displace silicon crystal



Classes of Ionizing Space Radiation





Classes of Ionizing Space Radiation

- 1. Cosmic Rays
 - Originating for our sun (Solar Wind) and outside our solar system (Galactic)
 - o Mainly Protons and heavier ions
 - \circ Low flux
- 2. Solar Particle Events
 - Solar flares & Coronal Mass Ejections
 - o Electrons, protons, alpha, and heavier ions
 - o Event activity tracks solar min/max 11 year cycle
- 3. Trapped Radiation
 - o Earth's Magnetic Field traps charged particles
 - Inner Van Allen Belt holds mainly protons (10-100's of MeV)
 - Outer Van Allen Belt holds mainly electrons (up to ~7 MeV)
 - o Heavy ions also get trapped

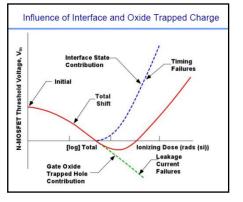
Which radiation is of most concern to electronics?

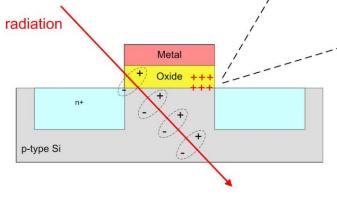
<u>Concern</u>

- Protons (¹H)
 - Makes up ~85% of galactic radiation
 - Larger Mass than electron (1800x), harder to deflect
- Beta Particles (electrons & positrons)
 - Makes up ~1% of galactic space
 - o More penetrating than alphas
- Heavy lons
 - Makes up <1% of galactic radiation
 - High energy (up to GeV) so shielding is inefficient
- Neutrons
 - $\circ~$ Uncharged so difficult to stop

- Alpha Particles (He nuclei)
 - Makes up ~14% of galactic radiation
 - ~ 5MeV energy level & highly ionizing but...
 - Low penetrating power
 (50mm in air, 23um in silicon)
 - Can be stopped by a sheet of paper
- Gamma
 - $\circ~$ Highly penetrating but an EM wave
 - o Lightly ionizing

Hole Trapping


- Electrons recombine guicker due to faster mobility


Holes get "stuck" due to lower mobility
Lowers Vt by effectively "thinning" the oxide

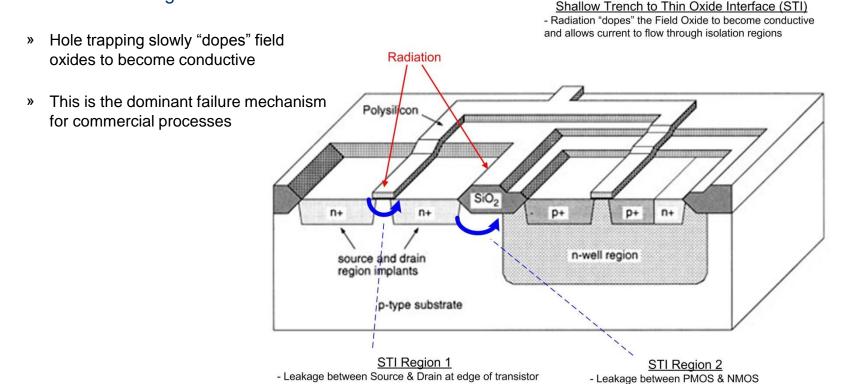
- EHP formed by ionization

What are the Effects?

- 1. Total lonizing Dose (TID)
 - o Cumulative long term damage due to ionization.
 - Primarily due to low energy protons and electrons due to higher, more constant flux, particularly when trapped
 - Problem #1 Oxide Breakdown
 - » Threshold Shifts
 - » Leakage Current
 - » Timing Changes

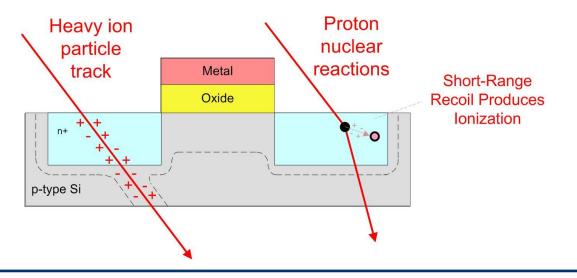
- Vt eventually goes negative turning on MOS

Interface Trapping


- The Si/Si02 interface typically contains Si/H bonds - This is due to the annealing process in hydrogen
- When this bond is severed, H will bond with itself
- This leaves a dangling Si bond with net positive charge
- This initially lowers Vt and then ultimately raises it.

What are the Effects?

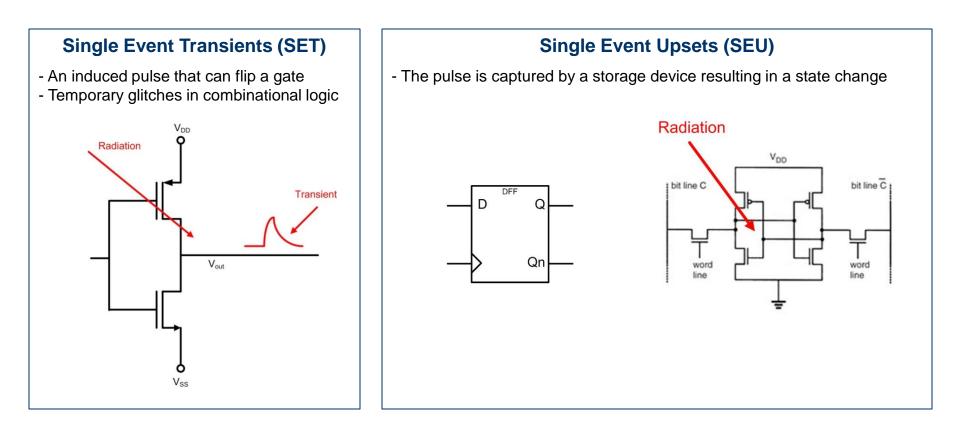
- 1. Total Ionizing Dose (TID) Cont...
 - Problem #2 –Leakage Current



What are the Effects?

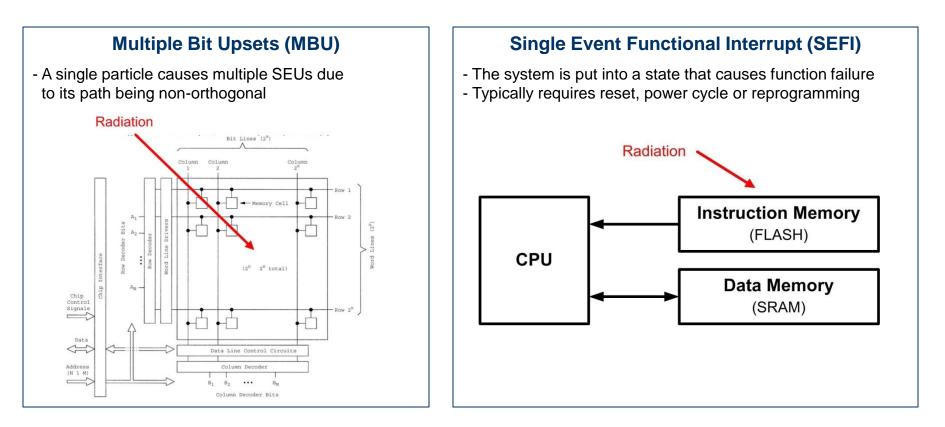
- 2. Single Event Effects (SEE)
 - o Electron/hole pairs created by a single particle passing through semiconductor
 - o Primarily due to heavy ions and high energy protons
 - Excess charge carriers cause current pulses
 - Creates a variety of destructive and non-destructive damage
 - The ionization *itself* does not cause damage, the damage is secondary due to parasitic circuits

"Critical Charge" = the amount of charge deposited to change the state of a gate



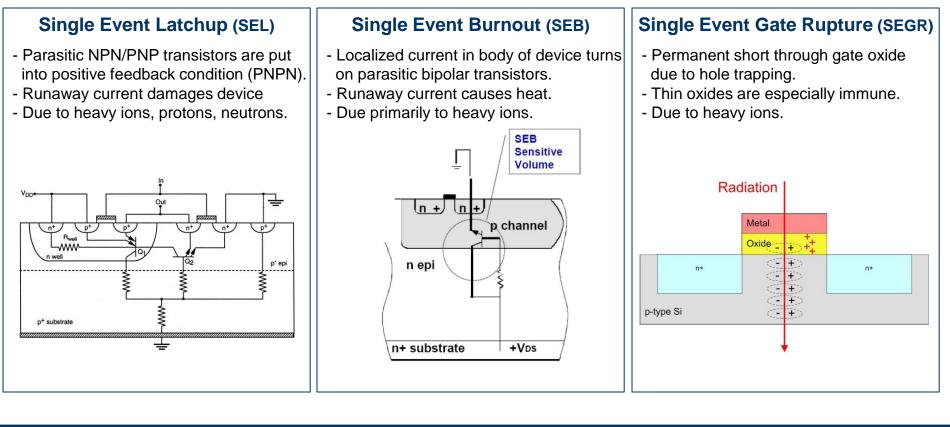
What are the Effects?

2. Single Event Effects (SEE) - Non-Destructive (e.g., soft faults)



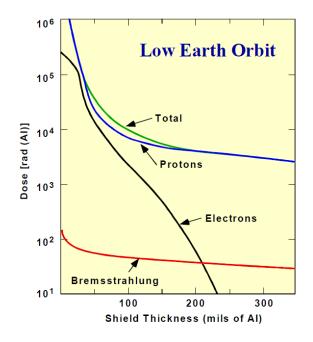
What are the Effects?

2. Single Event Effects (SEE) - Non-Destructive (e.g., soft faults)



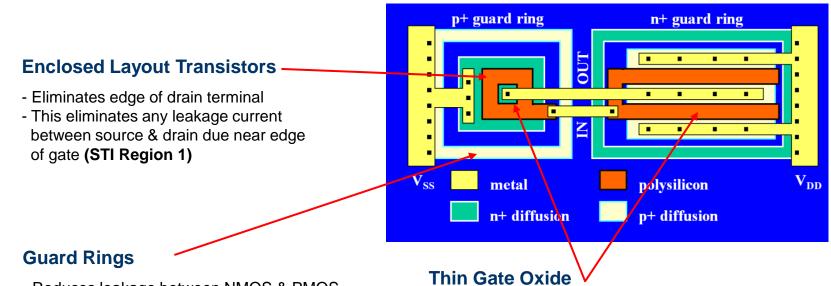
What are the Effects?

2. Single Event Effects (SEE) – **Destructive** (e.g., hard faults)



Shielding

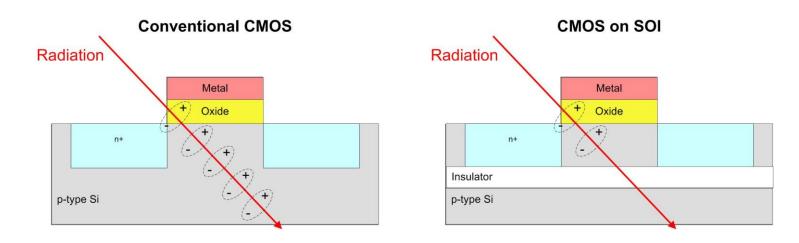
- Shielding helps for protons and electrons <30MeV, but has diminishing returns after 0.25".
- This shielding is typically inherent in the satellite/spacecraft design.


Shield Thickness vs. Dose Rate (LEO)

Radiation Hardened by <u>Design</u> (RHBD)

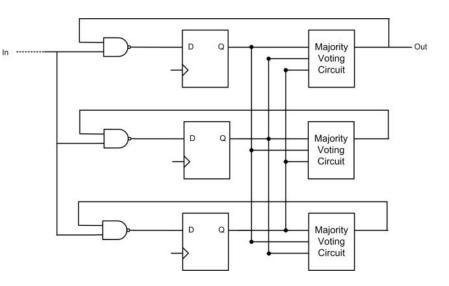
- Uses commercial fabrication process
- Circuit layout techniques are implemented which help mitigate effects

- Reduces leakage between NMOS & PMOS devices due to hole trapping in Field Oxide (STI Region 2)
- Separation of device + body contacts
- Adds ~20% increase in area


- This oxide reduces probability of hold trapping.
- Process nodes <0.5um typically are immune to Vgs shift in the gate.

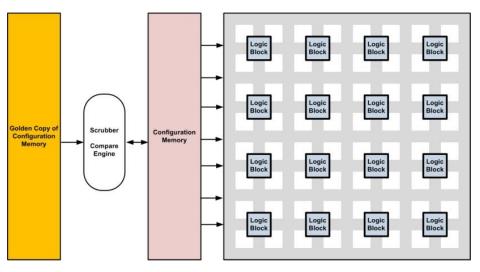
Radiation Hardened by <u>Process</u> (RHBP)

- An insulating layer is used beneath the channels
- This significantly reduces the ion trail length and in turn the electron/hole pairs created
- The bulk can also be doped to be more conductive so as to resist hole trapping



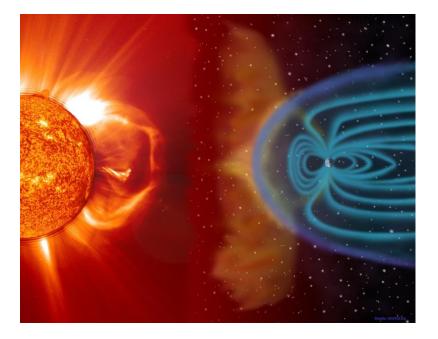
Radiation Tolerance Through Architecture

- 1. Triple Module Redundancy
 - o Triplicate each circuit
 - Use a majority voter to produces output
 - o Advantages
 - » Able to address faults in real-time
 - » Simple
 - o Disadvantages
 - » Takes >3x the area
 - » Voter needs to be triplicated also to avoid single-point-of-failure
 - » Doesn't handle Multiple-Bit-Upsets



Radiation Tolerance Through <u>Architecture</u> Cont...

- 2. Scrubbing
 - Compare contents of a memory device to a "Golden Copy"
 - Golden Copy is contained in a radiation immune technology (fuse-based memory, MROM, etc...)
 - o Advantages
 - » Simple & Effective
 - o Disadvantages
 - » Sequential searching pattern can have latency between fault & repair



Effects Overview

- Primary Concern is Heavy Ions & high energy protons
- All modern computer electronics experience TID and will eventually go out
- Heavy lons causing SEEs cannot be stopped and an architectural approach is used to handle them.

FPGAs are Uniquely Susceptible

- 1. Total Ionizing Dose
 - o All gates and memory cells are susceptible to TID due to high energy protons
- 2. Single Event Effects
 - o SETs/SEUs in the logic blocks
 - $\circ~$ SETs in the routing
 - SEUs in the configuration memory for the logic blocks (SEFI)
 - SEUs in the configuration memory for the routing (SEFI)

Radiation Strikes in the Circuit Fabric

(Logic + Routing)

Cartig	Cento	Cooffa Logic	Logic
SRAM Block	SRAM Block	SRAM Block	Block
Config	Config	Config	Config
SRAM	SRAM SRAM	SRAM SRAM	SRAM SRAM
Config SRAM Block	SRAM Block	SRAM Block	SRAM Logic Block
Config	Corfig	Config	Centlig
SRAM	SRAM SRAM	SRAM SRAM	SRAM SRAM
Ceefig Logic	Config	Config	Confg Logic
SRAM Block	SRAM Block	SRAM Block	SRAM Block
Config	Config	Config	Contig
SRAM	SRAM SRAM	SRAM SRAM	SRAM SRAM
Gento SRAM Block	SRAM Block	Config SRAM Block	Control Logic Block

Radiation Strikes in the Configuration Memory

(Logic + Routing)

What is needed for FPGA-Based Reconfigurable Computing

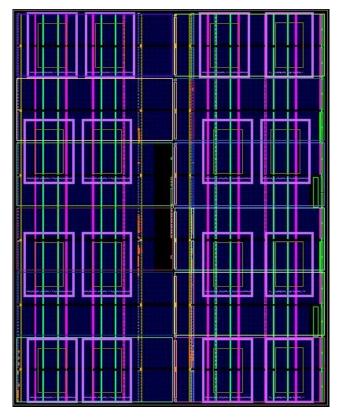
- 1. SRAM-based FPGAs
 - To support fast reconfiguration
- 2. A TID hardened fabric
 - Thin Gate Oxides to avoid hole trapping and threshold shifting (inherent in all processes)
 - Radiation Hardened by Design to provide SEL immunity (rings, layout, etc...)

Does This Exist?

- 1. Yes, Xilinx Virtex-QV Space Grade FPGA Family
 - TID Immunity > 1Mrad
 - RHBD for SEL immunity
 - o CRC in configuration memory

The Final Piece is SEE Fault Mitigation due to Heavy lons

- SEU will happen due to heavy ions, nothing can stop this.
- A computer architecture that expects and response to faults is needed.



A Many-Tile Architecture

- The FPGA is divided up into *Tiles*
- A Tile is a quantum of resources that:
 - Fully contains a system (e.g., processor, accelerator)
 - Can be programmed via partial reconfiguration (PR)

Fault Tolerance

- 1. TMR + Spares
- 2. Spatial Avoidance and Background Repair
- 3. Scrubbing

16 MicroBlaze Soft Processors on a Virtex-6

1. TMR + Spares

- 3 Tiles run in TMR with the rest reserved as spares.
- In the event of a fault, the damaged tile is replaced with a spare and foreground operation continues.

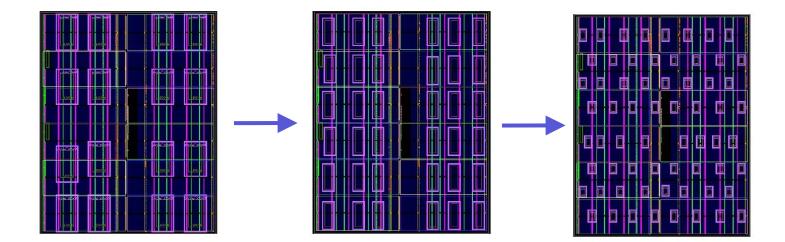
2. Spatial Avoidance & Repair

- The damaged Tile is "repaired" in the background via Partial Reconfiguration.
- The repaired tile is reintroduced into the system as an available spare.

3. Scrubbing

- A traditional scrubber runs in the background.
- Either blind or read-back.
- PR is technically a "blind scrub", but of a particular region of the FPGA.

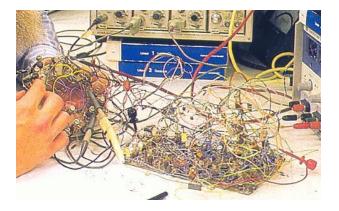
Shuttle Flight Computer (TMR + Spare)



Why do it this way?

With Spares, it basically becomes a flow-problem:

- o If the repair rate is faster than the incoming fault rate, you're safe.
- If the repair rate is slightly slower than the incoming fault rate, spares give you additional time.
- The additional time can accommodate varying flux rates.
- Abundant resources on an FPGA enable dynamic scaling of the number of spares. (e.g., build a bigger tub in real time)



Practical Considerations

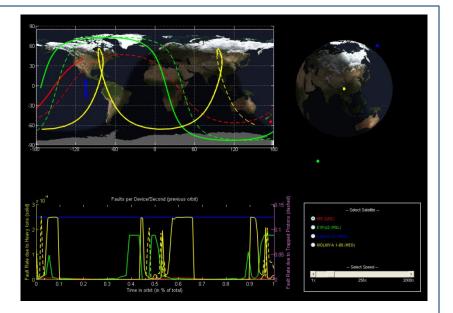
- Foreground operation can continue while repair is conducted in the background. Since scrubbing/PR is typically slower than reinitializing a tile, foreground "down time" is minimized.
- Using PR tiles, the system doesn't need to track the exact configuration memory addresses. Partial bit streams contain all the necessary information about a tile configuration.
- PR of a tile also takes care of both SEUs in the circuit fabric & configuration SRAM so the system doesn't care which one occurred.
- The "spares" are held in reset to reduce power. This is as opposed to running in N-MR with every tile voting.

Modeling Our Approach

- We need to compare our approach to a traditional TMR+scrubbing system
- We use a Markov Model to predict Mean-Time-Before-Failure
 - 16 tile MicroBlaze system on Virtex-6 (3+13)
 - $\circ~\lambda$ is fault rate
 - \circ μ is repair rate

Modeling Our Approach: Fault & Repair Rates

Fault Rate (λ)


- Derived from CREME96 tool for 4 different orbits
- Used LET fault data from V4

ORBITAL FAULT RATES FROM CREME96, IN FAULTS/DEVICE/SECOND

	Average	Worst Week	Peak 5 Minutes
ISS	0.0003479	3.544	72.96
HEO	0.08788	120.2	2398
E1P	0.003464	29.93	612.3
GEO	.0002494	149.8	3059

Repair Rate (µ)

- Measured empirically in lab on V6 system

Clock Blind Rate		k, Readback,
	undamage	ed damaged
25 MHz 2.97	5.31	6.35

Modeling Our Approach: Results

Baseline System

MTBF FOR BASELINE TMR+SCRUBBING SYSTEM (IN SECONDS)				
		Average	Worst Week	Peak 5 Min.
Blind	ISS	1.08E+08	3.19E+00	1.07E-01
	HEO	1.77E+03	6.43E-02	3.20E-03
	E1P	1.09E+06	2.69E-01	1.25E-02
	GEO	2.09E+08	5.14E-02	2.50E-03
RB	ISS	6.00E+07	2.73E+00	1.06E-01
	HEO	1.03E+03	6.39E-02	3.20E-03
	E1P	6.07E+05	2.63E-01	1.25E-02
	GEO	1.17E+08	5.12E-02	2.50E-03

Proposed System

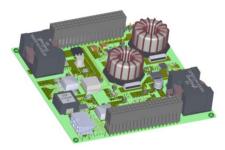
MTBF FOR TMR+SCRUBBING+SPARES SYSTEM (IN SECONDS)

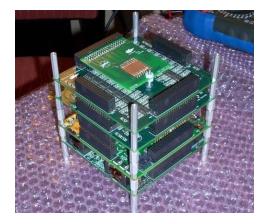
		Average	Worst Week	Peak 5 Min.
Blind	ISS	3.57E+43	7.83E+01	1.25E+00
	HEO	3.75E+11	7.41E-01	3.59E-02
	E1P	4.46E+29	3.30E+00	1.41E-01
	GEO	3.74E+45	5.90E-01	2.81E-02
RB	ISS	8.26E+41	5.49E+01	1.23E+00
	HEO	2.10E+10	7.33E-01	3.59E-02
	E1P	1.08E+28	3.16E+00	1.41E-01
	GEO	8.63E+43	5.85E-01	2.81E-02

Improvement

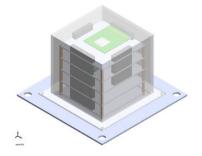
	INCREASE	E IN MTBF AFTER AI	DDITION OF SPARES	(%)		
		Average	Worst Week	Peak 5 Min.		
	ISS HEO	3.31E+35%	2356.07%	1067.45%		
Blind		2.12E+08%	1051.79%	1021.88%		
blind	E1P	4.10E+23%	1127.98%	1031.20%		
	GEO	1.78E+37%	1047.86%	1024.00%		Ok, it looks
	ISS	1.38E+34%	1912.98%	1058.51%		promising
RB	HEO	2.05E+07%	1046.32%	1021.88%		
КD	E1P	1.78E+22%	1103.77%	1028.80%	J	
	GEO	7.40E+35%	1042.38%	1024.00%		

Let's Build It


• Xilinx Evaluation Platforms (Virtex 4/5/6) for Lab Testing



Custom Virtex-6 platform for Flight Testing


Let's Fly It

- Local Balloon Flights (MSGC Borealis)
- HASP Program
- Suborbital Vehicle

-4 Flights in MT to 100k ft in 2011/12 -Thermal evaluation of form-factor

- 2nd test flight planned Sept-13

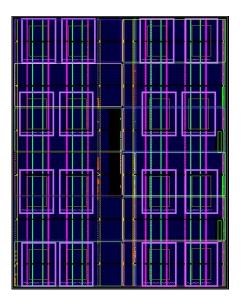
Payload design training (June-12)Flight planned 2013

^{- 1&}lt;sup>st</sup> test flight in Sept-12

Conclusion

What is Missing

- Faults in the routing
- MBUs
- Addressing Single-Point-of-Failure


What's Next


- Collect flight data
- Address above mentioned issues

Questions?

References

Content

- "Space Transportation Costs: Trends in Price Per Pound to Orbit 1990-2000. Fultron Inc Technical Report., September 6, 2002. Sammy Kayali, "Space Radiation Effects on Microelectronics", JPL, [Available Online]: <u>http://parts.jpl.nasa.gov/docs/Radcrs_Final.pdf</u>.
- Holmes-Siedle & Adams, "Handbook of Radiation Effects", 2nd Edition, Oxford Press 2002.
- Thanh, Balk, "Elimination and Generation of Si-Si02 Interface Traps by Low Temperature Hydrogen Annealing", Journal of Electrochemical Society on Solid-State Science and Technology, July 1998.
- Sturesson TEC-QEC, "Space Radiation and its Effects on EEE Components", EPFL Space Center, June 9, 2009. [Available Online]:
 - http://space.epfl.ch/webdav/site/space/shared/industry_media/07%20SEE%20Effect%20F.Sturesson.pdf
- Lawrence T. Clark, Radiation Effects in SRAM: Design for Mitigation", Arizona State University, [Available Online]: <u>http://www.cmoset.com/uploads/9B.1-08.pdf</u>
- K. Iniewski, "Radiation Effects in Semiconductors", CRC Press, 2011.

Images

- If not noted, images provided by <u>www.nasa.gov</u> or MSU
- Displacement Image 1: Moises Pinada, http://moisespinedacaf.blogspot.com/2010_07_01_archive.html
- Displacement Image 2/3: Vacancy and divacancy (V-V) in a bubble raft. Source: University of Wisconsin-Madison
- SRAM Images: Kang and Leblebici, "CMOS Digital Integrated Circuits" 3rd Edition. McGraw Hill, 2003
- SEB Images: Sturesson TEC-QEC, "Space Radiation and its Effects on EEE Components", EPFL Space Center, June 9, 2009.
- FPGA Images: <u>www.xilinx.com</u>, <u>www.altera.com</u>
- RHBD Images: Giovanni Anelli & Alessandro Marchioro, "The future of rad-tol electronics for HEP", CERN, Experimental Physics Division, Microelectronics Group, [Available Online]:

