Performance Modeling and Noise Reduction in VLSI Packaging

Ph.D. Defense

Brock J. LaMeres University of Colorado October 7, 2005

Problem Statement

- VLSI Packaging Limits System Performance
 - 1) Supply Bounce
 - 2) Signal Coupling
 - 3) Bandwidth Limitation
 - 4) Impedance Discontinuities
 - 5) Cost & Scaling

Agenda

- 1) **Problem Motivation**
- 2) Research Overview
- 3) Advantages Over Prior Techniques
- 4) Broader Impact of this Work

1) Problem Motivation

• IC Design/Fabrication is Outpacing Package Technology

- We're seeing exponential increase in IC transistor performance
- >1.3 Billion transistors on 1 die [Fall IDF-05]

• Packages Have Been Designed for Mechanical Performance

- Electrical performance was not primary consideration
- IC's limited electrical performance
- Package performance was not the bottleneck

• VLSI Performance Exceeds Package Performance

- Packages optimized for mechanical reliability, but still used due to cost
- IC performance far exceeds package performance

• Package Interconnect Contains Parasitic Inductance and Capacitance

- Long interconnect paths

Wire Bond Inductance (~2.8nH)

Package Parasitics Limit Performance

- Excess L and C causes package noise
- Noise limits how fast the package can transmit date

• Aggressive Package Design Helps, but is expensive...

- 95% of VLSI design-starts are wire bonded
- Goal: Extend the life of current packages

2) Research Overview

Research Overview

• Performance Modeling & Bus Sizing

- algebraic model to predict performance and cost-effectiveness

• Bus Expansion CODEC

- encoding data to avoid patterns on bus which cause excessive noise

• Bus Stuttering CODEC

- encoding data to avoid patterns on bus which cause excessive noise

• Impedance Compensation

- adding C or L near package to match impedance to system

Publications: Performance Modeling and Bus Sizing

- "FPGA I/O When to go serial", IEE Electronic Systems and Software, 2004
- "Performance Model for Inter-Chip Busses Considering Bandwidth and Cost" DesignCon, 2005
 - Best Paper Award
- "Performance Model for Inter-chip Com Considering Inductive Cross-talk and Cost", *ISCAS*, 2005
- "Performance Model for Inter-Chip Busses Considering Bandwidth and Cost", DesignConEast, 2005
- "Package Performance Model for Off-chip Busses Considering Bandwidth and Cost", *IEE Journal on Computers and Digital Techniques* (accepted for publication)

Publications: Bus CODECs to Avoid Package Noise

- "Encoding-based Minimization of Inductive Cross-talk for Off-chip Data Transmission", DATE, 2005
- "Controlling Inductive Cross-talk and Power in Off-chip Buses using CODECS", ASP-DAC 2006 (accepted for publication)
- "Bus Stuttering: An Encoding Technique to Reduce Inductive Noise in Off-Chip Data", DATE 2006 (submitted)

Publications: Impedance Compensation

- "Time Domain Analysis of a Printed Circuit Board Via", Microwave Journal, 2000
- "The Effect of Ground Vias on Changing Signal Layers in Multi-Layered PCBs", *Microwave and Optical Technology Letters*, 2001
- "Broadband Impedance Matching for Inductive Interconnect in VLSI Packages", *ICCD*, 2005
 Best Paper Award
- "Impedance Matching Techniques for VLSI Packaging", *DesignCon*, 2006 (accepted for publication)

- Analytical Model To Predict Bus Performance
 - VLSI/CAD integration
 - Quick hand calculations

• We Can Use Package Noise As the Failure Parameter

- Any noise source can be used as limit

- Max (di/dt) or (dv/dt) is extracted and converted to bus throughput

New

Performance Modeling

• Bus Notation

- Analysis performed on repetitive segment, reducing computation time
- A scalable framework is used to represent the bus configuration

New

Performance Modeling

• Use Ground Bounce as Failure Mechanism

: Slewrate

$$slewrate = \left(\frac{dv}{dt}\right) = \left(\frac{di}{dt}\right) \cdot Z_{load}$$

: **Risetime**

: Datarate

$$DR_{\max} = \frac{p \cdot Z_0}{(1.5) \cdot (0.8) \cdot \left[\left(\frac{L_{11} \cdot W_{bus}}{N_g} \right) + \sum_{k=p_L}^{p_L} M_{1(|k|+1)} + \sum_{k=p_C}^{p_C} \frac{C_{1(|k|+1)} \cdot Z_0^2}{(0.8)} \right]}{UI = (1.5)(\text{trise}) = 1/DR}$$

$$\therefore \text{ Throughput}$$

Tx

DAT

DAT

WBUS

• BGA Wire-Bond Package Simulations

- Model Matches Simulations to 11% for segments greater than 1 bit
- Throughput does not increase linearly as channels are added

New

Bus Expansion CODEC

• Encode the Data To Avoid Noise Causing Vector Sequences

- Reducing noise allows faster per-pin datarate
- Throughput is increased even after considering Overhead
- Bus Expansion CODEC maps on-chip bus size (m) into off-chip bus size (n)

Bus Expansion CODEC - Constraints

• For Each Possible Noise Source on the Bus, a Constraint is writter

• Each Constraint is Evaluated to Find Illegal Transitions:

$\mathbf{v_1^j} = 1 = \mathbf{rising}$	$\mathbf{v_1^j} \ \mathbf{v_2^j} \ \mathbf{v_3^j}$
$\mathbf{v_1^j} = 0 = \mathbf{static}$	
$\mathbf{v_1^j} = -1 = \mathbf{falling}$	$1 \ 0 \ 1$
	1 -1 0
	yiolates user-defined "glitch" parameter
	1 -1 1
	1 1 0
	violates user-defined " <i>supply</i> " bounce parameter
	1 1 1

Bus Expansion CODEC - Algorithm

• The Remaining Legal Transitions Construct a Directed Graph

• The Directed Graph is evaluated to see if an *m*-bit bus can be encoded

- A closed set of nodes S must exist such that:
 - $\bullet \ |S| \geq 2^{\mathrm{m}}$
 - each vertex s in S has at least 2^m outgoing edges to vertices s' in S

Bus Expansion CODEC – Physical Results

• TSMC 0.13um Synthesis Results

- RTL design, synthesized and mapped
- Segment sizes $2 \rightarrow 8$ implemented
- Logic, delay, and area evaluated

	Bus Size (m)	Noise Limit								
		5% (aggressive)	10% (non-aggressive)							
	2	0.170	encoder not required							
Delay (ns)	4	0.670	0.503							
	6	1.150	0.955							
	8	1.310	0.983							
375	2	22	encoder not required							
Area (um^2)	4	152	114							
1658) 54	6	614	509							
	8	1,181	886							

📻 wave - default								_ 🗆 🗙
File Edit View Insert Format Tools Window								
🖌 🕞 🖉 🕹 🕹 🗞 🛍 🖴 🖌 📐 🎘 🕑 💽		Q Q 🔍 🖪	3+					
/test_expansion_data/c1/clock	1							
	230	239 240	241 242	243 244 245	246 247 248	249 250 251 252	253 254 255 0 1	2
⊕ /test_expansion_data/c1/expansion_data_out	524	2072 112	176 304	560 1072 2096	224 352 608	1120 2144 448 704	1216 2240 896 0 2	4
								-
Now	:00 ns	250 III	3 3	350	400	450	500 550	600
Cursor 1 0 ns								
	4 1							\geq
215 ns to 625 ns								1.

Bus Expansion CODEC – Physical Results

- Xilinx FPGA, 0.35um Implementation Results
- RTL design implemented
- Xilinx, VirtexIIPro, FPGA

Bus Expansion CODEC – Physical Results

• Xilinx FPGA, 0.35um Implementation Results

- RTL design, implemented
- Segment sizes $2 \rightarrow 8$ measured
- Logic operation verified
- Noise Reduced from 16% to 4%

(3 bit, SPG=4:1:1)

	Bus Size (m)	Noise Limit
	20	5% (aggressive) & $10%$ (non-aggressive)
	2	0.351
Delay (ns)	4	1.020
2013 17 - 201 - 20 <u>7</u> - 2	6	1.450
	8	1.610
	2	< 1%
FPGA Usage	4	< 1%
	6	< 1%
	8	< 1%
	2	3x, 2-Input FG's
FPGA Implementation	4	6x, 4-Input FG's
	6	9x, 6-Input FG's
	8	12x, 8-Input FG's

Eile Edit View Setup Iools Marker	rs <u>R</u> unj	/Stop	Wave	form ⊻	⊻indow	Help														_8
D 😂 🖬 🎒 👬 😽 🛏 🎙		Q		*]]	E• #:	Tria			+	/ 1/.	°7		P III	\mathbf{X}						
M1 to M2 = 362.842 ns																				
Scale 33 ns/div 📓 ±፲± ±		Del	ay 🗌	631.	.968 ns			∿= T	 ∎	M										
Bus/Signal		467	ns I I	500 n:	s 6	33 ns	566	ins I I	599 ns	6	32 ns	665	ns I I	698 ns	. 7:	31 ns	764	ns I I	797 ns	
Time	Ė	Т	ΓĽ	ΤŤ	Т.Т	ГĒ	ΤT	ГT	ГĽ	ΓT	ГĨ	iт	ίĽ	L I	Т. Т	ГĹ	ГT	L L	ТГ	1 1 ^
E Clock	0 1	0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0
⊕-E data_gen_out		239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	0	
+	2	.072	112	176	304	560	1,072	2,096	224	352	608	1,120	2,144	448	704	1,216	2,240	896	o	2
																				-
			<u> </u>												L		L			
S Overview Wa	veform-	1	5																	

October 7, 2005

"Performance Modeling and Noise Reduction in VLSI Packaging"

Bus Stuttering CODEC

• Intermediate States are Inserted Between Noise Causing Transitions

- *Stutter* states limit the number of simultaneously switching signals
- The source synchronous clock is gated during stutter state

Bus Stuttering CODEC - Algorithm

• Constraints are Evaluated and a Legal Directed Graph is Created

- Directed Graph is Used to Map Transitions Between any Two Vectors - A transition path (which may include stutters) exists between any two vectors if:
 - There exists at least two outgoing edges for each vector $v_s \in G$ (including self-edge)
 - There exists at least two incoming edges for each vector $v_d \in G$ (including self-edge)

Bus Stuttering CODEC - Construction

• Multiple Stutter States can be used

- between 0 and 2^(Wbus-1) stutters can be inserted between any two vectors
- experimental results show that for segments up to 8 bits, more than 3 stutters is rare

• Overhead

- Overhead increases as segments sizes increase
- Still useful since segments greater than 8 bits are rarely used (SPG=8:1:1)

Bus Stuttering CODEC – Physical Results

- Circuit Implementation
- 32 pipeline stages used
- pipeline reset after 32 idle states (similar to SRIO, HT, and PCI Express)
- protocol inherently handles pipeline overflow

Bus Stuttering CODEC – Physical Results

• TSMC 0.13um Synthesis Results

- RTL design, synthesized and mapped
- Segment sizes $2 \rightarrow 8$ implemented
- Logic, delay, and area evaluated

	Bus Size	No	Noise Limit							
	-	5% (aggressive)	10% (non-aggressive)							
	4	2.02	1.99							
Delay (ns)	6	2.42	2.38							
	8	2.85	2.79							
-	4	311k	3 10k							
Area (um^2)	6	362k	345k							
85 2.0	8	382k	368k							

October 7, 2005

Bus Stuttering CODEC – Physical Results

• Xilinx FPGA, 0.35um Implementation Results

- RTL design, implemented
- Segment sizes $2 \rightarrow 8$ measured
- Logic operation verified
- Noise Reduced from 16% to 4%

(3 bit, SPG=4:1:1)

	Bus Size	Noise Limit
		5% (aggressive) & 10% (non-aggressive)
	4	4.78
Delay (ns)	6	5.29
	8	5.89
	4	< 1%
FPGA Usage	6	< 1%
0.454	8	< 1.5%

Eile Edit View Setup Iools Marke	ers <u>R</u> un/Stop <u>W</u> aveform <u>W</u> indow <u>H</u> elp	<u>P</u> ×
🛛 🗅 😂 🖬 🎒 🖍 🕷 📕	T► QQ K E+ # m 4	
M1 to M2 = 401.314 ns		
Scale 36.5 ns/div 🖩 ±1.±	± Delay 584 ns 📓 📕 ፲± T ┵┖ 💌	
Bus/Signal	401.5 ns 438 ns 474.5 ns 511 ns 547.5 ns 584 ns 620.5 ns 657 ns 693.5 ns 730 ns 766.5 ns	
Time		
🕀 🗓 data_in	12 13 14 15 0 255 0	
E clock	10	
⊞‡ stutter_data_out	10 11 12 13 14 15 3 0 3 15 63 255	
t stutter_clock_out	10	
		Ī
🔣 Overview 📜 W	/aveform-1	

October 7, 2005

"Performance Modeling and Noise Reduction in VLSI Packaging"

Impedance Compensation

• Add Capacitance Near Bond Wire to Reduce Impedance

- Adding additional capacitance lowers the wire bond impedance
- Impedance can be matched to system, reducing reflections

$$Z_{WireBond} = \sqrt{\frac{L_{WireBond}}{C_{WireBond}}} \leftarrow Add Capacitance to lower Z$$

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} \leftarrow Better Impedance Match results in less reflections$$

Impedance Compensation

• If the capacitance is close to the wire bond, it will alter its impedance

- Electrical lengths less than 20% of risetime are treated as lumped elements
- For modern dielectrics, anything within 0.15" of wire bond is lumped

Static Impedance Compensator

- Capacitor values chosen prior to fabrication
 - Equal amounts of capacitance are used on-chip and on-package

Static Impedance Compensator

• Time Domain Analysis (TDR)

$Length_{wb}$	$\Gamma_{No-Comp}$	$\Gamma_{MIM-Comp}$	$\Gamma_{Device-Comp}$
1 mm	4.5%	0.05%	0.5%
2 mm	8.7%	0.4%	1.2%
3 mm	12.7%	1.3%	2.4%
4 mm	16.4%	2.7%	4.1%
5 mm	19.8%	4.8%	6.0%

Dynamic Impedance Compensator

• Pass Gates are used to switch in on-chip capacitors

- Pass gates connect on-chip capacitance to the wire bond inductance
- Pass gates have control signals which can be programmed after fabrication

Dynamic Impedance Compensator

• Time Domain Analysis (TDR)

$Length_{wb}$	$\Gamma_{No-Comp}$	$\Gamma_{MIM-Comp}$	$\Gamma_{Device-Comp}$	Setting
1 mm	4.5%	1.0%	1.0%	001
2 mm	8.7%	1.8%	1.3%	011
3 mm	12.7%	3.6%	3.0%	100
4 mm	16.4%	4.3%	3.3%	110
5 mm	19.8%	6.0%	5.0%	111

3) Advantages Over Prior Techniques

Performance Modeling and Bus Sizing

• Currently Packages are Modeled Using SPICE

- Analog simulators are computationally expensive [BSIM, BPTM]
- Time of simulation reduces the number of configurations to be evaluated [Agilent Ft. Collins]

• Model is Linear in the size of the bus

- Fast computation is enabled using key assumptions
- More configurations can be evaluated, which expands usefulness
- Narrows hundreds of configurations into 2 or 3 for SPICE evaluation

Cost is Considered

- Analog simulators do not account for cost
- This adds even more time to analysis

Bus CODECs to Avoid Package Noise

• Current Approaches Have Physical Limitations

- Operate by reducing (^{di}/_{dt}) or skewing transitions [pipeline_damping, Multi-Level]
- Reducing $({}^{di}\!/_{dt})$ will ultimately limit performance
- Skewing data increases data invalid window, will ultimately limit performance

• Our CODECs operate above the physical layer

- Only data vectors are altered
- Off-chip drivers are left unchanged, no skewing is necessary
- This allows usefulness up to higher frequencies
- This also allows implementation in various process and package technologies

Impedance Compensation

• Currently, Package Interconnect is Not Addressed

- Only primary impedance is terminated (i.e., the PCB T-line) [HS_Design, MGT]
- No broadband solution exists

• Our Techniques Target Package Directly

- Impedance of wire bond or bumping can be addressed
- Broadband operation suited well for digital VLSI

Static Compensator

- Developed using embedded construction, no cost
- Simple and requires no active circuitry

• Dynamic Compensator

- Accounts for process variation by allowing programmability after fabrication

4) Broader Applications of this Work

The Move Toward FPGAs

• 80% of Design Starts Have FPGAs

The Move Toward FPGAs

FPGA Business Model

- Single design is packaged in multiple technologies
- This enables multiple performance price-points
- Designer cannot optimize for particular package

Power Minimization

• Power is Predicted to Limit Moore's Law

- Large amounts of power are consumed in the off-chip drivers
- CODECs can remove patterns which result in noise violations
- CODECs can also remove patterns with high power consumption

Internet Fabric

• Network Congestion Slows Internet Performance

- CODECs can remove patterns which result in noise violations
- Can extend CODECs to remove redundant patterns in streaming A/V

Backplanes and Connectors

• All Interconnect Has Parasitic Inductance and Capacitance

- Backplanes are popular to provide design segmentation and scalability
- Connectors are present in all digital designs
- Modeling, CODECs, and Compensation can be applied to backplanes/connectors

Questions?