

Controlled Impedance Chip-to-Chip Interconnect Using Coplanar Wire Bond Structures

Introduction

3D PACKAGING

- Integration Multiple Dies within a single package:
- Allows optimization of substrate materials for application.
- Mitigates power density issues from high transistor counts.
- Allows economical design partitioning.
- Improved electrical performance:
- Replaces package PCB traces with shorter wire bonds.

WIRE BONDS

- · Most common interconnect due to flexibility and low cost.
- Historically has not had to be treated as distributed element due to its relative length compared to system level T-lines

PROBLEM STATEMENT

- Today, CMOS edge rates are now fast enough to force wire bonds to behave as distributed elements.
- Distributed noise sources such as reflections due to impedance discontinuities need to be considered.

Proposed Solution

- Create controlled impedance T-lines for chip-to-chip signaling using 3-wire coplanar structures.
- On-chip: G-S-G coplanar wire bonds.
- Off-chip: G-S-G coplanar T-lines

Fig 1. 3-D Rendering of our interconnect approach used in System-in-Package application with (a) adjacently-placed dies and (b) stacked-dies. Coplanar transmission lines on the two dies are connected using a G-S-G wire bond configuration. Sam Harkness, Jeff Meirhofer, & Brock J. LaMeres Electrical & Computer Engineering Dept. Montana State University Bozeman, MT 59717

System Design

(b)

Fig 2. Critical dimensions for the (a) on-chip coplanar traces and the (b) off-chip coplanar wire bond structures.

CASE STUDY

- 50Ω and 75Ω terminated systems
- Gold wire and Aluminum wire

μm 30 68 94 110 228 318

- $25\,\mu\text{m}, 50\,\mu\text{m},$ and 75 μm wire

Fig 3. Pitch vs. Diameter for the controlled impedance coplanar wire bond structure showing both a 50Ω and 75Ω system.

Structure	Param	Units	Dimensions					
			50 Ω		75 Ω			
Wire Bond	D _{wb}	μm	25	50	75	25	50	75
(ε _{r-nka} =4.3)	P_{wb}	μm	53	108	159	92	186	272
Coplanar	Tsig	μm	1	1	1	1	1	1
(ε _{r1} =4.3)	Tox	μm	1	1	1	1	1	1
(ε _{r2} =11.7)	W _{sig}	μm	26	48	74	24	44	76
	w .	um	50	100	150	50	100	150

Table I. Dimensions for the matched impedance interconnect system for three sizes of commercially available wire bonds.

Finite Element Analysis

Fig 4. $|S_{21}|$ response for the 50 Ω system with Aluminum wire bonds

Fig 6. $|S_{21}|$ response for the

 50Ω system with Gold wire

Fig 8. Interconnect structure

used for Finite Element

Analysis (FEA).

bonds

Fig 7. $|S_{21}|$ response for the 75 Ω system with Gold wire bonds

- In all cases, the loss of the system remains above -2.2dB up to 20GHz.
- The 75Ω systems outperform the 50Ω systems due to the inherent advantage of lower attenuation in higher impedance systems.
- The Gold wires outperform the Aluminum wires due to the increased conductivity of the metals