DesignCon 2005

Track 3: Power and Package Co-Design (3-WP1)

Design of a Low-Power Differential Repeater Using Low-Voltage Swing and Charge Recycling

Authors:

Brock J. LaMeres, University of Colorado /

Sunil P. Khatri Texas A&M University

Problem Statement

- Power is the largest problem facing IC/SoC designers
- On-chip trace delay limits performance in DSM
 - 1) Repeaters are used to reduce delay
 - 2) Repeaters add power

Agenda

- 1) Problem Motivation
- 2) Proposed Solution
- **3) Simulation Results**

RC Trace Delay

RC Trace Delay

Interconnect Dominates DSM Performance

<u>Standard Solution</u> :

"Repeater Insertion"

- Break line into smaller segments:
- $(\mathbf{L} \rightarrow \mathbf{0})$ $t_{buf} = t_{RC}$ • Optimal sizing when:
- Linear dependence:

 $t_{delay} \propto L$

Repeaters Add Power

Repeater Power Scaling Isn't Realistic

2003 ITRS Prediction:

- at 50nm, global interconnect will consume 40% of power in VLSI
- 0.25um *uP* : 50,00

:

- 50,000 repeaters
- : 8 Watts

- 70nm *uP*
- 700,000 repeaters
- : 60 Watts

Need to Reduce Power

- Need techniques to reduce power of repeater scheme
- A small decrease in delay is acceptable
- Net improvement in PDP is the goal

Current Trends

- Differential signaling on clock traces for Noise Immunity
 - Well Suited for Low-Voltage Output Swing
 - Well Suited for Charge Sharing

Differential Signaling

- Complimentary Outputs for VLSI CMOS
- Receiver Performs (CLK-CLK) which rejects coupled noise
- Receiver Performs (CLK- $\overline{\text{CLK}}$) which doubles effective amplitude

Low-Voltage Swing Outputs

• Reducing Output Swing Reduces Power

$$P_{dynamic} = C \cdot V_{swing}^2 \cdot f$$
Quadratic
Decrease!!!

• Differential Signaling has extra margin to accommodate this

$$\frac{\overline{\text{Clk}}}{\text{Clk}} \implies (\text{Clk}-\overline{\text{Clk}})$$

Low-Voltage Swing Outputs

- \bullet Typical CMOS swings from V_{SS} to V_{DD}
- Insert V_t drops between supplies to reduce output swing

Low-Voltage Swing Outputs

• The reduced output swing is:

$$V_{LV-swing} = V_{DD} - V_{t,n} - |V_{t,p}|$$

• The reduced power is:

$$P_{dynamic} = C \cdot V_{LV-swing}^2 \cdot f$$

Charge Recycling

• Typical CMOS charges output from supply

$0 \rightarrow 1$ Transition

 $1 \rightarrow 0$ Transition

Charge Recycling

• The Symmetry of Differential Signaling can be exploited

One Driver is always charging while the other is discharging

Charge Recycling

• During first half of the transition equal charge is distributed

Charge Recycling

• Charge can be "Shared" between Clk & Clk from t_0 to $t_{Vswing/2}$

Charge Recycling

• From $t_{V_{Swing/2}}$ to t_{SS} charge is provided by Supplies as usual

Charge Recycling

• Clk & Clk are connected from t_0 to $t_{Vswing/2}$

Charge Recycling

• Clk & Clk are disconnected from $t_{Vswing/2}$ to t_{SS}

Charge Recycling

• Circuit Description

Trace Modeling

- BSIM 0.1um Process (BPTM)
- 1cm Length
- Metal 3

Repeater Design

Using Optimal Sizing:

Full-Swing Repeater: 15
Low-Voltage Repeater: 9
Low-Voltage Charge Recycling Repeater: 9

<u>Circuit Operation</u>

• Circuit Operation

Current Profile vs. Time

Performance

Both Improve PDP

Circuit	Figures of Merit			Improvement		
	Delay (ps)	Power (mV)	PDP (ps \cdot mV)	Delay (%)	Power (%)	PDP (%)
Full-Swing Repeater	639	12.06	7.71	-	-	
Low-Voltage Repeater	699	7.54	5.27	-9	37	32
Low-Voltage Charge Recycling Repeater	774	6.92	5.36	-21	43	31

• Lowest Delay = Full-Swing Repeater

- Lowest PDP = Low-Voltage Repeater (32% improvement)
- Lowest Power = Low-Voltage Charge Recycling Repeater (43% improvement)

Implementation Details

Suggested Use

• On-Chip Metal 3 or Greater

Not Suggested

• On-Chip Metal 1 or 2 (too much resistance, acts distributed)

• Off-Chip

(too much inductance, acts distributed)

Implementation Details

Sizing

Summary

Trends

- Power and Delay are major problems in DSM
- Repeaters are expected to dominate power
- Differential signaling is being used for noise immunity on clocks

Proposed Technique

- Low-Voltage Swing enabled by differential signaling
- Charge Recycling enabled by differential signaling
- Suffer small delay penalty for decreased power (PDP 1)

Questions?

