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ABSTRACT 
 

Adaptive antenna arrays use multiple antenna elements to form directional 
patterns in order to improve the performance of wireless communication systems.  The 
antenna arrays also have the ability to detect the direction of incoming signals.  These 
two capabilities allow a smart antenna system to adaptively beamform to more efficiently 
communicate between nodes.  The direction-of-arrival estimation is a crucial component 
of the smart antenna system that uses open-loop adaptive approach.  Historically this 
estimation has been accomplished using a personal computer.   Implementing the 
estimation in the digital domain has the potential to provide a low cost and light weight 
solution due to recent advances in digital integrated circuit fabrication processes.  
Furthermore, digital circuitry allows for more sophisticated estimation algorithms to be 
implemented using the computational power of modern digital devices.  This thesis 
presents the design and prototyping of direction-of-arrival (DOA) estimation for a smart 
antenna system implemented on a reconfigurable digital hardware fabric.  Two DOA 
estimation algorithms are implemented and the performance tradeoffs between a custom 
hardware approach and a microprocessor-based system are compared.  The algorithms 
were implemented for a 5.8 GHz, 8-element circular antenna array and their functionality 
was verified using a testbed platform.  The implementation and analysis presented in this 
work will aid system designers to understand the tradeoffs between implementing 
algorithms in custom hardware versus an embedded system and when a hybrid approach 
is more advantageous. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Smart Antennas 
 
 

Since the early days of wireless communication, the simple omni-directional 

antenna has been used to transmit and receive wireless signals.  This type of antenna 

radiates and receives power equally from all directions in the azimuth plane.  In order to 

communicate with a node or a user, this antenna will broadcast omni-directionally 

regardless of the location of the receiver.  In a two dimensional domain, omni-directional 

antennas offer no preferential gain in either transmit or receive mode to any user despite 

their spatial location.  Omni-directional communication systems must contend with noise 

sources since they have no ability to spatially discern between wanted and unwanted 

radiation.  Figure 1.1 shows an omni-directional antenna and its coverage pattern as well 

as the coordinate system used in this thesis.  

 

Figure 1.1 Omni-directional antenna radiation pattern [2]. 
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In order to improve the effectiveness of a wireless communication system, an 

array of omni-directional antennas can be used to transmit and receive. This provides the 

ability to estimate the direction-of-arrival (DOA) of an incoming signal and electronically 

form a beam in the direction of the receiver.  An antenna array can exploit the 

directionality of the radiation pattern to create a more robust communication link. A 

system which adaptively forms a corresponding beam towards a desired user in real time 

is called a smart antenna system or an adaptive array antenna [1]. 

Using focused beams to communicate has many advantages over transmitting in 

an omni-directional fashion.  It allows spatial selection of where to transmit power.  This 

boosts the range of the communication link by focusing the power toward a certain user 

rather than radiating energy in all directions.  Spatial selection also enables frequency 

reuse, which means that the same frequency can be used by multiple nodes by spatially 

discriminating between them.  In receiving mode, some smart antennas have the ability to 

estimate the DOA using the relative phase between antenna elements.  Smart antennas 

can also alter the phase and amplitude of individual antenna elements in order to listen in 

a particular direction.  This helps to better receive signals from sources of interest, 

especially in the presence of interference sources.  In other words, smart antennas will 

magnify the incoming signal in a certain desired direction and attenuate most others.  

Moreover, smart antennas also have the ability to form directional nulls to suppress 

interferers making the system more immune to jammers.  Figure 1.2 shows a beam 

formed using a smart antenna system. 



 
 

3 

 

Figure 1.2 Beam formed using a smart antenna system. 
 
 

Antenna Arrays 
 
 

Smart antennas are based on using multiple antenna elements configured in an 

array.  The configuration of the array has a direct effect on the performance of the 

system.  There is a variety of antenna array configurations that have been used in smart 

antenna systems over the past decades including linear, rectangular, and circular.  The 

choice of antenna array configuration depends on the desired specifications of the system 

which include cost, number of users, accuracy, range, steering, and noise cancellation.  

A uniform antenna array is one that has identical antenna elements placed in a 

regular geometrical configuration.  The simplest of all antenna array configurations is the 

uniform linear array (ULA) [2].  This configuration consists of an array of elements that 

are placed along a line with equal spacing between each adjacent antenna elements.  

ULAs are attractive due to their simple implementation; however, they can only detect 

and steer beams up to 120o perpendicular to the axis of the array.  Figure 1.3 shows an 8-

element ULA.  
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Figure 1.3 8-element uniform linear array. 
 

In applications that require scanning in both  (elevation) and  (azimuth), 

uniform rectangular arrays (URAs) can be used.  URAs are formed by placing antenna 

elements in a rectangular grid.  This configuration is a more attractive form of smart 

antenna system due to its ability to form a beam toward any point in space.  URAs also 

provide more symmetrical radiation patterns with lower side lobes.  Side lobes are 

smaller parasitic beams that are formed in directions other than the main beam.  Figure 

1.4 shows a 16-element URA. 

 

Figure 1.4 16-element uniform rectangular array. 
 

A final array configuration is the circular array.  Uniform circular arrays (UCAs) 

are formed by placing elements around a circular ring at constant intervals.  Recently, 
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UCAs have been adopted in smart antenna systems because they are azimuthally 

symmetrical.  In addition, UCAs inherently do not have edges due to their geometrical 

configuration.  This allows the UCA to form identical beam patterns independent of the 

direction of the beam [3].  Figure 1.5 shows an 8-element uniform circular array. 

 

Figure 1.5 8-elements uniform circular array. 
 
 

Switched-Beam vs. Adaptive-Array Systems 
 
 

Directional beams are formed in antenna arrays by configuring the gain and phase 

of the signal going to each antenna element.  The signals are configured by applying a set 

of weights to the original signal which modifies its gain and phase appropriately.  These 

weights can either be pre-calculated or generated dynamically in real time.  Systems that 

use predefined patterns are called switched-beam while systems that dynamically 

calculate the weights are called adaptive-array. 

In switched-beam systems a set of weights are pre-calculated corresponding to the 

number of unique angular sectors that are desired.  The collection of these switched-beam 

patterns can achieve omni-directional coverage.  A smart antenna system that uses 
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switched beams scans space for users by switching between the different beam weights 

and observing received power.  In this manner, the estimated DOA of incoming signals 

can be found.  In transmit mode, switched-beam systems form directional patterns 

corresponding to sectors where users were located using the appropriate pre-calculated 

beam weights.  The advantage of switched-beam systems is that the pre-calculation of the 

weights reduces the requirements of real-time processing.  The drawback of a switched-

beam system is that the beam direction is limited to the number of pre-calculated sectors 

which is limited to the antenna array parameters (size and number of elements).  Figure 

1.6 shows the switched-beam radiation patterns for an 8-element circular array antenna 

system. This figure shows 16 unique pre-calculated directional beams.  

 

Figure 1.6 Switched beam radiation patterns for an 8-element circular array antenna system. 
 

 Adaptive-array systems are equipped with a powerful signal processor that allows 

the system to analyze the environment and produce customized radiation patterns in order 

to efficiently communicate with users.  The system adaptively calculates a set of weights 

to be applied to the array elements on the fly according to the location of the users and 
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the interferers.  Such capability results in enhancing the signal coming from users, and at 

the same time suppressing other interfering and noise sources.  This is achieved by 

controlling the main beam direction as well as the directions of side lobes and nulls to 

map each user to a beam and each unwanted interfering source to a null.  Adaptive-array 

systems also have the ability to more efficiently track mobile users and optimize the 

beam pattern continuously to follow them and accommodate changes in the environment 

using a close-loop adaptive system [4].  Implementing adaptive-array systems is more 

complicated and requires a greater amount of real-time computation to achieve optimum 

performance. Figure 1.7 shows the radiation pattern produced by an 8-element UCA in a 

smart antenna system directed at 180 o. 

 

Figure 1.7 Radiation pattern produced by an 8-element UCA in a smart antenna system (180o). 
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Project Overview 
 
 

This thesis presents the implementation of two different DOA estimation 

algorithms for a smart antenna system implemented on a Xilinx Virtex-5 Field 

Programmable Gate Array (FPGA).  The algorithms were implemented in both custom 

hardware and using a microprocessor to compare the tradeoffs between computation 

time, resource utilization, accuracy, and development time.  The custom hardware 

implementation was designed at the hardware description language (HDL) level using 

VHDL.  The microprocessor implementation was designed using a Xilinx MicroBlaze 

soft processor.  A hybrid implementation was also developed that provided the optimal 

balance between performance and development time.  

 
Bartlett DOA Estimation 

This thesis starts with the exploration of Bartlett DOA estimation.  Bartlett DOA 

estimation is a Fourier spectrum analysis method [9].  Bartlett estimates the DOA by 

computing the received power and then detects the peak of the spectrum, which 

represents the estimated DOA. 

First, the Bartlett algorithm was implemented using custom hardware on the 

FPGA using VHDL.  This implementation required 46.34μs to calculate the DOA 

estimation.  Second, the Bartlett algorithm was implemented on a Xilinx MicroBlaze soft 

processor within the FPGA [42].  This implementation required 1,219,602.4μs to 

calculate the DOA.  Finally, a hybrid version of the system was implemented using a 

combination of both custom hardware and a soft processor.  The total time required to 
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complete the DOA estimation using this method is 289.01μs.  Custom hardware 

implementations are attractive due to their performance; however, they require longer 

development time in addition to being difficult to debug due to the sheer size of the final 

hardware netlist.  On the other hand, software implementations are faster to design and 

simpler to debug, but do not yield the same performance as their hardware counterparts.  

 
MVDR DOA Estimation 

The second part of this thesis explores the minimum variance distortionless 

response (MVDR) DOA estimation.  The key is to minimize the output power of the 

system in all directions except the one that points to the desired signal direction.  This 

process is repeated as  is swept from 0 to 360.  This method provides an estimate of 

the power density spectrum over entire the field of view of an array.  It uses the array 

weights which are obtained by maximizing the mean output power in the direction of 

interest.  MVDR DOA estimation outperforms the Bartlett method in term of resolution 

properties.  In this thesis, MVDR DOA estimation was implemented on a hybrid system 

since a hybrid approach provides an optimal balance between development time and 

performance. The MVDR DOA estimation required 290,740μs to perform the DOA 

estimation using a hybrid approach.   

A study to investigate the performance of a custom HDL-based implementation 

was conducted by testing the hardware implementation of the covariance matrix 

computation.  Since the other matrix operations needed to calculate the MVDR-based 

DOA estimation are similar to the covariance matrix calculation, this study will give an 

indication of the overall performance of the custom HDL-based implementation.  The 
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simulation results showed that it takes 580μs to compute the covariance matrix without 

pipelining (64 times faster than the hybrid-based implementation) and 16.1μs with 

pipelining capabilities (2300 times faster).  Based on this study, it can be speculated that 

a complete hardware-based system can compute the DOA estimation 64 times faster than 

its hybrid-based counterpart.  

Both DOA estimation systems were designed to interface with an 8-element 

circular antenna array.  The antenna array was designed to work at a carrier frequency of 

5.8GHz.  Figure 1.8 shows the smart antenna assembly encapsulating both the antenna 

and a beam forming board.   

 

Figure 1.8 5.8 GHz circular antenna array that this system was designed to use. 
 

System Evaluation 

Both systems were implemented on a Xilinx Virtex-5 FX70T FPGA using a 

ML507 evaluation platform board.  Figure 1.9 shows the ML507 evaluation platform 

board. 
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Figure 1.9 Xilinx ML507 evaluation platform board equipped with a Virtex-5 FX70T FPGA. 
 
A group of four Tektronix AFG3022 dual channel arbitrary/function generators 

were used as signal sources to emulate down-converted wave fronts observed by the 

DOA estimation system.  These four generators were controlled using National 

Instruments LabVIEW to generate 8 signals which are phased in a certain manner to 

mimic the phase delays seen at the circular antenna array when a propagating plane wave 

arrives.  The 8-signal generators are connected to an 8-channel analog-to-digital 

converter (ADC) board that was designed at Montana State University.  

This thesis presents the full implementation and testing of two DOA estimation 

algorithms in both custom hardware designed at the VHDL level and in software running 

on a soft microprocessor. Their performances are compared to evaluate the speed and 

area utilization on a Xilinx Virtex-5 FX70T FPGA.  Based on this type of performance 

analysis, a computationally effective hybrid system can be constructed.  
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CHAPTER 2 

 
MOTIVATION 

 
Analog Smart Antenna Systems 

 

Analog smart antenna systems consist of hardware that processes the data in the 

analog domain to compute DOA estimation and form beams.  Most analog systems use a 

switched-beam method that is not optimal for continuous steering as in adaptive arrays.  

While architectures have been proposed which are capable of steering continuously using 

analog systems, they do not have the ability to perform complex beam forming operations 

such as controlling null locations [5-8].  Analog switched beam forming systems consist 

mainly of variable attenuators and phase shifters.  They have a predetermined set of 

weights that are applied to the variable attenuators and phase shifters in order to form the 

beams and search for the direction of incoming signals.   

DOA estimation using analog switched-beam system is accomplished through a 

search-lock-track process.  In this procedure, each predetermined beam weight is applied 

in turn and the received power for each sector is recorded.  Sectors with a received power 

above a certain threshold are deemed to have an active user.  In this manner, a course 

directional map of users can be created and directional beams can be formed accordingly.   

Analog systems are expensive to implement due to the high cost of precise analog 

components.  Also the analog components cause the complete system to be large in size 

due to the need for many discrete components.  Figure 2.1 shows an analog beam former 

board that was designed at Montana State University. 
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Figure 2.1 Analog beam-forming board (2.5‖  8‖). 
 
 

Digital Systems 
 
 

An increasing majority of applications in electronics and other technologies are 

being implemented using digital techniques rather than analog methods.  The reason 

behind this major switch goes back to the technological advances in the fabrication of 

digital devices, which has followed Moore’s Law throughout the years.  Figure 2.2 shows 

a graphical depiction of Moore’s Law from 1971 to 2008.  Moore’s Law states that the 

number of transistors on a single chip will double every 18 months [31].  This trend has 

held consistently for the past four decades and illustrates the explosive rate of growth in 

digital device capability.  Recent fabrication processes allow for developing inexpensive 

and powerful digital devices that are capable of performing complex computations in a 

timely manner.  In addition to high performance, many current digital devices are lower 

in power and more easily integrated into complex systems.  Unlike analog systems which 

typically require many discrete devices, digital systems offer the ability to integrate many 
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complex systems onto a single chip solution. This is very appealing for applications that 

are sensitive to weight and size restrictions.   

 

Figure 2.2 Moore's Law (1971-2006) [43]. 
 

Additionally, there are many more reasons that digital implementation becomes 

more appealing to designers over analog systems.  First, digital systems are generally 

easier to design due to the simplicity of the base device being a simple Boolean switch.  

Second, it is relatively simple to store large quantities of digital information using 

standard memory devices.  Furthermore, digital systems tend to be more immune to noise 

levels compared to analog implementations.  
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Field Programmable Gate Arrays 
 
 

An FPGA is a programmable logic device that can be configured to implement 

any arbitrary digital circuit.  FPGAs can be used to perform any operation that an 

application-specific integrated circuit (ASIC) can perform.  The performance of FPGAs 

has increased following Moore’s law over the past decade yielding programmable 

devices that are capable of meeting the performance specifications of many modern 

applications [41].  FPGAs are becoming a popular choice to implement digital systems 

due to their inherent flexibility and ability to implement complex systems in less time and 

cost compared to an ASIC.  Recently, the increased amount of hardware resources on 

FPGAs has enabled the implementation of microprocessors within the circuit fabric.  This 

has further increased the usefulness of FPGAs as a platform for embedded systems.  

Figure 2.3 shows a Xilinx Virtex-5 FPGA. Figure 2.4 shows an Altera Stratix-IV FPGA. 

 

 

Figure 2.3 Xilinx Virtex-5 FPGA. 

 

Figure 2.4 Altera Stratix-IV FPGA. 
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Current Digital DOA Estimation Implementations 
 
 
 Digital DOA estimation has grabbed the attention of many researchers in the past 

decade due to its ability to perform accurate beam forming in smart antenna applications.  

Since this area is still in its infancy, there have been very few attempts to implement a 

complete DOA estimation system in digital hardware.  This thesis presents the design, 

implementation, and testing of two complete DOA estimation systems implemented in 

digital hardware using a variety of implementation techniques.  This thesis presents the 

performance comparison between two DOA estimation algorithms (Bartlett vs. MVDR) 

in addition to a performance comparison of hardware architectures (fully custom HDL vs. 

microprocessor based). 

 
HDL Simulation of DOA Estimation 

 This section presents current research that has been conducted on investigating 

the implementation of DOA estimation algorithm through HDL simulation.  In most 

cases, these systems are simulated using Xilinx System Generator or ModelSim. Xilinx 

System Generator is a high level design and simulation tool from Xilinx to help design 

systems on FPGAs without going into the details of the design.  ModelSim is stand-alone 

software that simulates custom hardware designs at the HDL level. 

 The authors of [15] proposed a dedicated processing unit to increase the 

performance of FPGA-based DOA estimation.  In their work, a custom hardware block 

was described that could perform the recursive least squares (RLS) algorithm.  RLS is 

one of the most time consuming computational tasks in recursive DOA estimations.  
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Since the calculation of the RLS algorithm involves matrix inversion, a technique called 

QR-Decomposition (QRD) is used to calculate the inverse of a matrix by performing two 

steps.  First, QRD decomposes the input matrix into an orthogonal matrix and a triangular 

matrix.  Second, it performs back substitution to produce the inverse of the matrix.  In 

their work, the Xilinx System Generator was used to implement and test the QRD 

implementation.  Their design targeted the Virtex-2 FPGA and was optimized to run at a 

clock frequency of 139MHz.  This design provides a viable solution to calculating the 

QRD using systolic array computers; however, it does not provide a full system 

implementation and no hardware testing was performed on the FPGA. 

  Another research group explored the implementation of a subspace tracker based 

on the ESPRIT DOA estimation algorithm [12].  The proposed design is based on a 

variation of the standard ESPRIT algorithm which achieves a faster DOA estimation by 

performing only real value computations [16].  The design is implemented to find the 

DOA estimation for a single source.  ModelSim was used to design and test the design.  

In addition to simulation, the design was synthesized to work on a Xilinx Virtex II 

FPGA.  It was reported that the maximum clock frequency that the system can operate at 

is 16.7 MHz limited by a long critical path.  Although this design can achieve improved 

performance by avoiding complex computations, it only presents simulation results and 

does not report hardware testing.  Moreover, the long critical path in the FPGA prevents 

the system from running at higher speeds, hence the system cannot benefit from the speed 

up achieved by performing only real computations. 
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DOA Estimation Using Mathematical Software Tools 

 The majority of digital DOA estimation research has been conducted through 

simulation using mathematical software tools such as MATLAB®.  These tools provide 

the ability to model a system and provide insight into the performance of various DOA 

estimation algorithms without building physical hardware.  Simulation is the transitional 

stage between theory and mathematical derivations on the one hand, and the 

implementation of a real system on the other. Simulations also provide an insight into 

which DOA estimation techniques are more suitable for certain smart antenna system 

rather than others.  This is done by studying the DOA estimation algorithms under certain 

circumstances such as high noise, multipath, small number of array elements, or signal 

power.  Mathematical simulation tools can also be used to derive more computational 

effective techniques in performing DOA estimation and prove their robustness and ability 

to compute accurate estimations.  There have been many reports on work to develop 

robust DOA estimation algorithms using mathematical software packages. 

 The authors of [14] presented the performance analysis of four DOA estimation 

algorithms; Bartlett, MVDR, Linear Prediction, and Multiple Signal Classification 

(MUSIC) [9-11, 15, 19].  In their work, the authors used the MATLAB® simulation 

environment to perform mathematical analysis to examine the resolution of each DOA 

estimation algorithm as well as its sensitivity to changes in parameters related to the 

design of the array.  In their simulations, Bartlett DOA estimation showed good results in 

detecting the angles of arrival of two sources that were 20 apart; however, the Bartlett 

DOA estimation algorithm was not able to resolve the angles of arrival of two sources 
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that were only 10 apart.  It was also reported that increasing the number of antenna 

elements will improve the Bartlett DOA estimation resolution to be able to resolve 

directions of sources that are less than 10 apart.  The second simulation analyzed the 

effect of increasing the number of array elements on MVDR DOA estimation.  The 

simulation study reported an improved resolution as the number of elements in the 

antenna array was increased.  It also reported that MVDR DOA estimation resolution 

degrades in the case where the competing sources are highly correlated.  Another DOA 

estimation algorithm called the Linear Prediction (LP) method was also examined.  The 

LP method estimates the DOA by assuming one array element as a reference and 

examining the outputs of the other array elements.  LP is an attractive DOA estimation 

technique because it provides good estimation performance while maintaining a relatively 

low computational complexity [15].  LP simulation reported an increased resolution of 

the DOA estimation as the antenna elements were increased.  It also showed that in 

addition to providing DOA estimation information, the LP method provides signal 

strength information of each source.  The last DOA estimation algorithm evaluated in this 

work was the MUSIC algorithm, which is a subspace-based DOA estimation technique 

[11].  MUSIC provides a much higher resolution than Bartlett, MVDR, and LP DOA 

estimations.  It estimates the number of signals, the angles of arrival, and the strengths of 

each incoming signal; however, MUSIC DOA estimation is computationally expensive 

and more complicated to implement than other DOA estimation techniques.  The 

simulation results show that MUSIC can perform DOA estimation efficiently and can 

distinguish between sources that are only 1 apart. 
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PC-Based DOA Estimation 

One way to test DOA estimation algorithms using real signals is to use a standard 

personal computer (PC) as the processing unit.  In this type of PC-based DOA estimation 

system, an antenna array is connected to a receiver board that down-converts the 

incoming signals to an intermediate frequency (IF).  A data acquisition (DAQ) card then 

digitizes the down-converted signal from each array element and sends the digital data 

(amplitude and phase) to the DOA estimation software running on the PC for analysis.  

Once the DOA is estimated, a beam radiation pattern is calculated (or selected) and a 

beam former board connected to the PC is configured to form a beam in the desired 

direction [13].  Figure 2.5 shows a smart antenna system that performs DOA estimation 

using a PC. 
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Figure 2.5 A smart antenna system that performs DOA estimation on a PC designed at Montana State 
University. 
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The authors of [17] have developed a PC-based smart antenna system using 

MATLAB® to evaluate a variety of DOA estimation algorithms including Bartlett, 

MVDR, MUSIC, and spatially selective MUSIC [9-11, 18].  This system is controlled 

using a LabVIEW software program that interfaces with all of the instrumentation and 

hardware including the DAQ card and the beam former board.  This implementation has 

many advantages over other test setups.  First, it provides a flexible, fully equipped 

adaptive smart antenna testbed that has DOA estimation, beam-forming, and null-steering 

capabilities.  It also provides the ability to use different algorithms for DOA estimation 

and beam forming.  This test setup is optimal for early DOA estimation algorithm 

evaluation and performance analysis; however, it does not provide a real-time digital 

system that can be released to production in a cost effective manner.   

  
Complete Hardware Implementations 

 To date, there are not many full digital implementations that perform DOA 

estimation. This is a consequence of the complexity of implementing such algorithms on 

digital devices such as FPGAs due to the mathematically intense algorithms needed to be 

performed to estimate the DOA.  One digital DOA estimation system was implemented 

on an FPGA using a Unitary MUSIC algorithm [22].  The system was implemented using 

two Altera FPGAs which performed the digital signal processing required to perform the 

algorithm [20, 21].  The complete testbed included down-converters to down-convert the 

signal from radio frequency (RF) to IF.  The IF signal was digitized through ADCs and 

then the sampled data was sent to the FPGAs for processing.  The maximum operating 

frequency of the digital system was 27.4 MHz.  The reason for this slow performance 
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was a long critical path in the correlation matrix computation stage.  This implementation 

is one of the very few complete digital implementations that have been published; 

however, this implementation is a multiple chip solution and the FPGAs are required to 

run at a slower clock speed due to a long critical path. 

 
Contributions of This Work 

 
 

Historically, the signal processing hardware has been the limiting factor to 

implementing sophisticated DOA estimation and beam forming algorithms [23, 24]. The 

computation time and physical size of the hardware necessary for complex DOA 

estimation has often precluded them from being deployed practically in modern mobile 

communication systems [30]. Recently, advances in the fabrication of digital integrated 

circuits have renewed interest in deploying complex smart antennas in portable 

communication devices. FPGA-based processing has emerged as one of the most 

attractive technologies for complex DOA estimation due to the inherent flexibility of the 

hardware in addition to the ability to optimize the execution of the algorithm between 

hardware and software [25-29].  FPGAs allow time critical tasks such as Fast Fourier 

Transforms (FFTs) to be implemented in custom hardware while other less 

computationally intense operations can be performed in soft microprocessors. The ability 

to tailor the hardware implementation to the specific needs of the DOA estimation 

algorithm makes FPGAs an attractive technology.  Furthermore, the ability to implement 

the entire signal processing hardware on a single chip enables the practical deployment of 

smart antennas in portable communication devices. 
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This thesis presents the digital hardware implementations of both Bartlett and 

MVDR DOA estimations.  It also offers a complete prototype for testing the system on 

hardware. Furthermore, it compares the performance, resource utilization, and the 

development time between different implementation techniques including fully custom 

HDL, microprocessor-based, and a hybrid approach.  The work presented in this thesis 

contributes to the current advancements in technology by offering a fully digital system 

prototype in a single chip solution.  

 
Full System Prototype 

 The digital implementation presented in this thesis not only provides a system that 

performs the DOA estimation, but it also provides a complete testbed platform as well as 

all the components that are needed to run the system in the field with real data coming 

from the antenna system.  The 8-element UCA antenna is connected to a receiver board 

that down-coverts the RF signal coming from the antenna to IF. The IF signals are then 

sent to an 8-channel ADC board to be digitized.  The ADC board has the ability to 

sample the signals at either 12.5 MSPS or 25 MSPS which is reconfigurable in real-time.  

The data is received by the FPGA which interfaces with the ADC board and then 

performs all the digital signal processing required to calculate the DOA estimation.  The 

final result of the DOA estimation is shown on an LCD mounted on the Xilinx 

development board.  Also, the system stores the power spectrum versus angle in memory.   

Most of the previous work in this area has focused on how much of the FPGA 

resources are necessary to implement the algorithm.  While there are authors who report 
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physical testing of the hardware system [20], the majority of work in this area does not 

test the algorithms using an entire system prototype [13-19]. 

 
Hardware vs. Software Implementation Comparison 

 In addition to implementing the system using custom HDL, the system was also 

implemented using a soft-processor running on the FPGA.  The advantage of this is to 

provide a fair comparison between hardware and software implementations of the DOA 

estimation system.  The two implementation techniques are presented and their relative 

performances are compared to evaluate the speed and area on a Xilinx Virtex-5 FX70 

FPGA.  Based on this type of performance analysis and comparisons, a computationally 

effective hybrid system was constructed, which is a further contribution of this work that 

has not been considered by other authors [13-17, 20, 21]. 

 
Full Single Chip Digital Solution 

The system presented in this thesis is based on a single chip solution.  The entire 

signal processing system is implemented on one Virtex-5 FX70T FPGA.  Unlike systems 

presented in [17, 20, 21], this system, including both hardware and software 

implementations, only requires a single FPGA.  This enables the practical deployment of 

smart antennas in portable communication devices.  It also avoids the complexities of 

interfacing multiple digital devices together such as synchronization issues and 

transferring high speed signals over interconnects.  
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CHAPTER 3 

 
SYSTEM DESIGN 

 
The system developed to perform DOA estimation was built in a manner to make 

it portable and interchangeable to allow for future improvements and to enable tests of a 

wide variety of DOA estimation algorithms.  The system consists of two main sections; 

the DOA estimation (receive) system and the beam former (transmit).   The DOA 

estimation system consists of the antenna array, a receiver board, an ADC board, and the 

FPGA.  The FPGA interfaces with the ADC, receives the sampled data, and estimates the 

DOA.  Figure 3.1 shows the digital hardware integrated into the smart antenna system. 
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Figure 3.1 The digital system outlined by the dashed line integrated in the smart antenna system. 
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DOA Estimation System Hardware 

 
As mentioned earlier in figure 3.1, the entire DOA estimation system consists of a 

UCA, a receiver board, an ADC board, and an FPGA.  The UCA is designed to receive 

5.8GHz RF signals which are passed to a custom receiver board.  The receiver board is 

designed to translate the incoming RF signals from 5.8 GHz to IF and to deliver the 

information (amplitude and phase of each antenna element signal) with minimal phase 

and magnitude distortion to the ADC board.  The RFs signal are amplified, filtered and 

mixed using a distributed Local Oscillator (LO) on the receiver board.  The oscillator can 

be tuned to any desired frequency within the LO band enabling the RF signals to be 

down-converted to IF for DOA estimation.   

The board has capabilities to process IF signals with bandwidth between 1 MHz 

and 10 MHz.  This is necessary to accommodate wider band signals (e.g. WiMAX) up to 

10 MHz wide.  To mitigate co-channel interference at RF, an enclosure was designed to 

provide isolation between channels.  The translation board connects to the ADC board 

through 8 SMA connections.  Figures 3.2 and 3.3 show the second version of the receiver 

board that was designed at Montana State University. 
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Figure 3.2 The front of the receiver board.    Figure 3.3 The back of the receiver board. 
 

An ADC board is used to digitize the IF signals and transmit them to the FPGA 

hardware that performs the digital signal processing to complete the DOA estimation.  

The FPGA also contains the interface circuitry that controls the ADC in addition to the 

circuitry that processes the sampled data and puts it into a compatible format for the 

DOA estimation algorithms.  The ADC board has two Quad 8-bit ADC chips that off-

loads sampled data to the FPGA using low-voltage differential signaling (LVDS-ANSI-

644).  The ADC board has two sampling modes that are configurable in real-time.  The 

fast mode enables the ADC board to sample at a speed of 25 MSPS and the slow mode 

enables the board to sample at a speed of 12.5 MSPS.  The FPGA controls the ADC 

board through a serial peripheral interface (SPI) bus to configure the ADC converters.  

Figure 3.4 shows the custom 8-channel ADC board that was designed at Montana State 

University.   
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Figure 3.4 The custom 8-channel ADC board designed at Montana State University. 
 

All the digital circuitry is implemented on a Xilinx ML507 evaluation platform.  

This platform contains a Virtex-5 FX70 FPGA running at 100MHz clock rate, which is 

suitable for general purpose logic applications in addition to implementing soft-

processors.  Figure 3.5 shows the Xilinx ML507 evaluation board containing the Virtex-5 

FX70 FPGA connected to the custom 8-channel A/D board.   

 

Figure 3.5 Xilinx ML507 board containing the Virtex-5 FX70 FPGA connected to a custom 8-channel 
ADC board. 
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Testbed Platform 

 
For prototyping purposes, a group of four Tektronix AFG3022 dual-channel 

arbitrary/function generators were used to emulate the signals being received by the 8-

element circular array antenna and down-converted to IF by the translation board.  These 

four signal generators are controlled using National Instruments LabVIEW to generate 8 

signals which are phased in a certain manner to mimic the phase delays seen at the 

antenna elements when excited by a propagating plane wave.  The signal generators have 

the ability to generate any arbitrary waveform defined in LabVIEW.  These signals can 

be as simple as sinusoidal waveforms or as complicated as a WiMAX OFDM frame 

burst.  LabVIEW controls the type, the frequency, the amplitude, and the phase shifts of 

the signals generated by the Tektronix signal generators through a graphical user 

interface (GUI) that allows easy reconfiguration of these parameters.  Figure 3.6 shows 

the block diagram of the testbed setup.  Figure 3.7 shows the four Tektronix AFG3022 

function generators were used as signal sources.  Figure 3.8 shows the LabVIEW GUI 

that interfaces with the four Tektronix signal generators. 
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Figure 3.6 Block diagram of testbed setup designed at Montana State University. 
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Figure 3.7 Tektronix AFG3022 dual channel arbitrary/function generators were used as signal sources. 

 

Figure 3.8 The LabVIEW GUI that interfaces the four Tektronix signal generators designed at Montana 
State University. 
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The testbed hardware in addition to the ADC and FPGA boards were used to 

perform, verify, and test the two DOA estimation algorithms that are implemented using 

HDL custom hardware and soft-processors.  Figure 3.9 shows the entire test setup used to 

verify the performance of the DOA estimation algorithms. 

 

Figure 3.9 Testbed for the DOA estimation verification.  The signal generators emulate 8 down converted 
carrier signals with phases corresponding to an arbitrary incident angle as observed by the 
5.8GHz circular antenna array. 

 

System Verification 

 
 The conventional technique of verifying the functionality of any system is to 

create test points at the inputs and the outputs of critical components with traditional test 

equipment such as oscilloscopes or logic analyzers.  In custom HDL designs, the final 
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netlist is embedded in the FPGA, which makes it hard to access the nodes each 

component for testing.  Therefore, other tools and techniques have been developed to 

verify functionality of digital systems implemented in an FPGA.  Xilinx Inc. designed a 

tool called Chipscope that can be inserted in the custom HDL design that enables system 

developers to view any internal signal or node including embedded hard or soft 

processors.  Chipscope capture signals at operating speed and stores them into designated 

memory locations to be sent to a software GUI running on a PC using standard 

communication peripherals (USB or parallel ports).  The signals then can be viewed in 

timing diagrams using a tool called Chipscope Pro Analyzer or they can be exported to 

other tools such as MATLAB® for further analysis.  Figure 3.10 shows the Chipscope 

Pro Analyzer GUI presenting a snapshot of the sampled data. 

 

Figure 3.10 Chipscope Pro Analyzer GUI showing a snapshot of the sampled data.  
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CHAPTER 4 

 
BARTLETT DOA ESTIMATION 

 
The Bartlett algorithm [9, 19] is a Fourier spectrum analysis method which is 

relatively simple to implement and computationally efficient.  While Bartlett does not 

yield the most precise results for DOA estimation, it is a well understood algorithm and 

provides a convenient way to verify the functional operation of a DOA estimation system 

prototype. 

 
Bartlett Algorithm 

 
The goal of the Bartlett DOA estimation is the find a set of weights w that 

maximizes the received signal power.  The m-element circular array receives signals from 

several spatially separated users.  The received signals usually contain both direct path 

and multipath signals, which are most likely from different directions of arrival.   

Suppose that K signals reach to the antenna. The array signal is defined:  

𝒙 𝑡 =   𝒂 
𝑘
 𝑠𝑘 𝑡 + 𝒏 𝑡 = 𝑨𝒔 𝑡 +  𝒏 𝑡 

𝐾

𝑘=1

 (4.1) 

where  

𝑨 =  𝒂 
1
 , 𝒂 

2
 , … , 𝒂(

𝑀
)  (4.2) 

is signal spatial signature and  

𝒔 𝑡 =  𝑠1 𝑡 , 𝑠2 𝑡 , … , 𝑠𝑀 𝑡  𝑇 (4.3) 

is signal vector, and n(t) is the noise vector. Here we assume Gaussian noise. 
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The covariance matrix of array signal is  

𝑹 = 𝐸 𝒙 𝑡 𝒙𝐻 𝑡  = 𝑨𝐸 𝒔 𝑡 𝒔𝐻 𝑡  𝑨𝐻 +  𝐸 𝒏 𝑡 𝒏𝐻 𝑡   (4.4) 

Hence, 

𝑹 = 𝑨𝑷𝑨𝐻 +  𝜎2𝑰 (4.5) 

where 

𝑷 =  𝐸 𝒔 𝑡 𝒔𝐻 𝑡   (4.6) 

is received signal power matrix, and 

𝐸 𝒏 𝑡 𝒏𝐻 𝑡   =  𝜎2𝑰 (4.7) 

is the noise power matrix. 2 is the noise power and I is the identity matrix. 

The covariance matrix of array signal for a limited length is  

𝑹 =
1

𝑇
 𝒙 𝑡 𝒙𝐻 𝑡 

𝑇

𝑡=1

 
(4.8) 

where T is the sampling time. 

The array output: 

𝑦 𝑡 = 𝒘𝐻  𝒙 𝑡  (4.9) 

The output power: 

𝑃 = 𝐸 𝑦 𝑡 𝑦𝐻 𝑡  =
1

𝑇
 𝑦 𝑡 𝑦𝐻 𝑡 

𝑇

𝑡=1

= 𝒘𝐻𝑹 𝒘 (4.10) 

Assume that there is a signal coming from , the measurement of the Bartlett array output 

is: 

max
𝑤

𝐸 𝒘𝐻𝒙 𝑡 𝒙𝐻 𝑡 𝒘 = max
𝑤

𝐸  𝑠(𝑡) 2 𝒘𝐻𝒂() 2 + 𝜎2 𝒘 2   (4.11) 
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 One solution of equation 4.1 is: 

 
If 𝑎   is normalized, then the Bartlett weight vector is found to be: 

𝒘𝐵 = 𝑎() (4.13) 

                                                   
This means that the Bartlett weight vector is equal to the incident wave spatial signature. 

The output power spectrum of Bartlett method is: 

𝑃 =
𝒂𝐻  𝑹 𝒂  

𝒂𝐻  𝒂  
 

(4.14) 

 
If 𝒂   is normalized, then the output power spectrum is found to be: 

𝑃 =  𝒂𝐻  𝑹 𝒂   (4.15) 

 

The peaks in the power spectrum represent the estimated DOAs of the incoming signals. 

 
 

 

 

 

 

 

 

 

 

𝒘𝐵 =  
𝒂()

 𝒂𝐻  𝒂()
 

(4.12) 
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Hardware Implementation 

 
The first implementation technique evaluated in this work was the custom HDL 

system.  All the digital circuitry that performs the Bartlett DOA estimation was 

implemented using VHDL.  The process of calculating the Bartlett DOA estimation 

algorithm consisted of multiple data path stages that transformed the input data into 

meaningful outputs representing the DOA estimation result.  The data path operations 

consisted of sampling the IF signals coming from the receiver board, performing FFT 

over the sampled data, performing frequency detection, and finally calculating the 

Bartlett DOA estimation.  The custom HDL implementation was designed using Xilinx 

ISE Design Suite 11.4.  Figure 4.1 shows the block diagram for the custom HDL 

implementation of the Bartlett DOA estimation. 

 

Figure 4.1 Block diagram of the Bartlett DOA estimation custom HDL implementation. 
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Implementation Details 

The ADC board is controlled by a driver running on the FPGA.  The driver was 

written using custom VHDL and consisted of two state machines.  The first state machine 

controls the ADC board and configures it to stream 8-bit offset binary samples out. Offset 

binary representation centers the signed numbers around (2n-1-1) where n is the number of 

bits (8-bit in this thesis), this is translated into a DC shift equal to half the voltage range 

of the ADC board.  The second state machine synchronizes with the ADC board to 

receive the samples from each of the channels serially through the differential lines.  

Synchronizing the ADC board to the FPGA is a crucial step to insure receiving correct 

data that digitally represent samples of the incoming signals.  The state machine was 

designed to receive data bits from all the channels simultaneously.   

Once the ADC chips are configured, they start streaming the data samples 

synchronous to a signal called the Frame Clock Output (FCO).  This signal runs 

continuously as the samples are streaming out of the ADC board.  After receiving each 

frame of data (one sample), the driver stores the received samples in a dual-port memory 

block of size 10248bit that is embedded in the FPGA.  The ADC acquires 1024 samples 

which represent a 40.96s time window that was found long enough to receive enough 

information about the signal to reach accurate analysis.  When the ADC driver is finished 

acquiring 1024 samples of data it performs three steps: 

1. Pauses the ADC board. 

2. Triggers a signal declaring the completion of the sampling process. 

3. Enters a standby mode waiting for a new sampling request. 
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After the completion of the sampling process, another process is triggered to start 

the first step in the data analysis and the computations that will eventually estimate the 

DOA.   

The first step in the DOA estimation is to compute the spatial spectrum of the 

incoming signal.  This is accomplished using an FFT module.  The Xilinx® 

LogiCORE™ IP Fast Fourier Transform core was used in the design to perform FFT 

analysis.  This implementation exploits the Cooley-Tukey FFT algorithm, an efficient 

method for calculating the Discrete Fourier Transform (DFT).  The core was generated to 

perform an 8-channel, 1024-point FFT over the sampled data.  The FFT core computes 

FFT for all the channels simultaneously.  The generated core was chosen to use the 

Radix-4 decomposition for computing the Fourier spectrum analysis which consists of 

log4(N) stages, with each stage containing N/4 Radix-4 butterflies, where  N is the point 

size of the transform.  Radix-4 is an option that speeds up the calculation of FFT since it 

only requires log4(N) stages; however, it occupies more resources on the FPGA.  As a 

result of using the FX70T FPGA, the FFT implementation was able to take advantage of 

built-in XtremeDSP slices (mult1818) which are optimized to efficiently perform 

certain mathematical operations such as multiply, multiply and accumulate (MACC), 

multiply add, etc...  Moreover, the Xilinx core generator provides the option to generate a 

fixed-point or a floating-point implementation of FFT. In fixed-point implementation, the 

user gets to choose what type of scaling is to be used during the calculations.  Scaling at 

each stage using a predefined fixed-scaling schedule was found to be the best option for 

this application.  FFT will be covered in more details later in this chapter. 
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The FFT is performed on the data acquired by the ADC board.  The FFT module 

computes a 1024-point forward Discrete Fourier Transform (DFT) efficiently.  The real 

data is fed to the FFT in 9-bit two’s compliment format which is formed by performing a 

sign extension of the samples that were originally stored in the 10248 sample memory 

block.  The output of the FFT is a combination of real and imaginary signed numbers, 

each 9 bits wide.  Upon the completion of the FFT, the output is stored into a 102418 

memory block where each word line contains the real part in the least significant 9-bits 

and the imaginary part is stored in the most significant 9-bits.  Once the FFT module is 

done storing the data in memory, it triggers a frequency detection module and then enters 

a standby mode waiting for a wake up signal requesting new FFT analysis to be 

performed on new inputs.  

This FFT core is wrapped by a module that interfaces with other components in 

the system, such as the sampler and the frequency detector.  The main functionality of 

this module is to prepare the data and convert it into a proper format for the FFT core to 

compute the transform.  At the beginning of each FFT burst, the wrapper initializes the 

FFT core to perform a forward FFT transform, it also sets the scheduling scheme to {10 

10 10 10 11}, which corresponds to a shift of 2 bits being performed after the first four 

stages of each FFT and a shift of 3 bits is performed at the last stage.  This scheduling 

scheme avoids overflows in the Radix-4 architecture as reported in the Xilinx FFT core 

datasheet [40].  Subsequently, the wrapper triggers the FFT core and starts loading the 

data into it and then the wrapper waits for the FFT analysis to be computed.  Afterwards, 
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the data generated by the core is sent to a 1024x18 FFT memory block to be stored.  The 

output will reside there waiting for the next processing stage to recall it.  

The frequency detection module searches the FFT data stored in memory and 

finds the maximum magnitude by adding the squared real and imaginary parts of each 

FFT bin. Since the objective of this process is to find the maximum, there is no need to 

calculate the square root because the result of a comparison will be the same in both 

cases.  This reduces the computational time needed to complete the frequency detection 

part of the system.  The goal behind doing frequency detection is to extract the FFT bin 

that contains the complex number denoting the amplitude gain and the phase shift of the 

incoming signal.  It is important to mention that the frequency detection is performed on 

one channel only.  The complex representation of the other signals observed at the other 

channels will be extracted from the same bin location of the FFT output as the first 

channel.  It is preferable use the same bin location as the first channel because noise 

could affect the results of the FFT and place the maximum of each channel in different 

bin locations.  Consequently, it is guaranteed that the relative phase shift between these 

signals will not be affected.  In other words, the FFT bin location that contains the 

complex representation of the signal has to stay the same across all channels regardless of 

noise, quantization error, or finite FFT length effects. This is because the 8 signals have 

the same frequency, as they are different copies of the same input wave signal incident on 

the antenna array. 

The frequency detection module is only performed on the first half of the FFT 

output since the magnitude of the FFT output is an even function; therefore, both first and 
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second halves of the FFT magnitudes are identical.  The frequency detection is 

implemented to perform three operations: 

1. Find the relative magnitudes by squaring each of the real and imaginary 

parts of the first half of the FFT output then summing them together. 

2. Compare the 512 magnitudes and finding the maximum magnitude. 

3. Calculate the frequency of the signal by multiplying the bin index of the 

highest magnitude by Fs/1024, where Fs denotes the sampling frequency. 

Since all of these operations are performed with fixed point data format, the 

output will be in a larger size than the input in order to avoid overflows.  In a digital 

multiplication process, the output equals twice the number of bits as the input. In addition 

the process output will be one bit larger than the input due to overflow.  This increase can 

be handled in two ways.  The output can be scaled to fit it in the same number of bits as 

the input, or these calculations can be performed without scaling the output and instead 

contain the increase of bits by using a larger number of bits to represent the output.  The 

latter way maintains precision but uses more logic elements in the FPGA.  In this 

implementation, the output precision was maintained to preserve precision and because 

the FX70T FPGA has a significant number of logic elements. 

The final step in the system is applying the Bartlett DOA estimation.  This is 

accomplished by applying the Bartlett algorithm which computes the power spectrum of 

each sector observed by the antenna elements.  The sector with the maximum power 

represents the direction of arrival of the incoming signal.  In this implementation, the 

space was divided into 8 sectors for simplicity and to prove the concept.   
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Using the maximum bin location found by the frequency detection block, the 

complex representations of all eight signals are loaded into local registers by setting the 

address bus to the address representing that location.  The data stored in the local 

registers representing the incoming wave vector is multiplied by the weights matrix.  The 

weights matrix includes pre-calculated weighs that are stored in a single port 64x9-bit 

block ROM.  The weights themselves are calculated using MATLAB® and then 

converted into a 9-bit two’s complement representation.  The multiplication is performed 

using one complex multiplier which utilizes 4 DSP slices.  The square of the output is 

calculated to obtain the magnitude of the results, and then the maximum power is found 

which represents the sector in space where the source of the incoming signal is located.  

All the operations in this module are fixed point and the output registers are expanded 

accordingly to accommodate the bit growth that occurs after each multiplication or 

addition.  This achieves more accurate computations compared to scaling the outputs. 

 
Comparative Analysis 

The performance and the resource utilization of each component of the custom 

HDL implementation were examined.  Both FFT fixed point and floating point 

implementations were examined and compared to realize the time needed to perform the 

transform as well as the amount of resources required to complete the transform.  The 

FFT core also has the ability perform the Fourier analysis over all channels 

simultaneously (parallel mode) or back to back (serial mode).  The serial and the parallel 

approaches were compared to decide which approach would be more suitable to this 

application in term of resources used and time required to perform the desired task.  
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While the time which the floating point FFT core required to complete the transform is 

comparable to its fixed point counterpart (34.31μs vs. 44.73μs), the amount of resources 

that the parallel floating point FFT utilizes (192 ExtremeDSP slices and 143 18K Block 

RAM) makes it impossible to fit a parallel FFT core in the selected FPGA which only 

contains (128 ExtremeDSP slices and 148 18K Block RAM).  While a larger FPGA can 

be used to fit a parallel floating point FFT, it is important to decide whether a floating 

point FFT is necessary or the system has the ability to perform an accurate DOA 

estimation with a fixed point FFT.  Furthermore, the serial version of both FFT 

implementations exhibited low resource utilization compared to their parallel version 

counterparts; however, they are 8 times slower than the parallel version.   

The performance and resource utilization of the other components, such as the 

frequency detection and the Bartlett DOA estimation algorithm, were measured.  The 

frequency detection component requires 10.3s to complete the desired task, while it 

utilizes only 2 ExtremeDSP slices to implement internal multipliers.  The Bartlett DOA 

estimation algorithm requires 1.73s to complete its operation and uses only LUTs and 

logic elements but no ExtremeDSP slices, which are the most expensive in the FPGA 

beside the 18K Block RAMs.  Table 4.1 shows the performance summary for the Bartlett 

DOA estimation implemented using custom HDL. 
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  Latency 
(μs) 

Resources Estimation 

Slices 
Slice 

LUTs 
XtremeDSP 18K Block 

Register Slices RAM 
FFT             
- Fixed Pt             
    + Serial 274.5 n/a n/a n/a 9 7 
    + Parallel 34.31 3347 10172 7434 72 20 
- Floating Pt             
    + Serial 357.84 n/a n/a n/a 24 18 
    + Parallel 44.73 n/a n/a n/a 192 144 
Freq Det             
- Fixed Pt 10.3 15 27 18 2 0 
Bartlett             
- Fixed Pt 1.73 58 200 165 0 0 
  

        
    

 
Table 4.1 The performance summary for the Bartlett DOA estimation implementation. 

 
Software Implementation 

 
The second implementation technique evaluated in this thesis used a MicroBlaze 

soft processor to compute the DOA estimation.  The MicroBlaze processor runs at clock 

speed of 100MHz in this system.  All the components of the DOA estimation were 

implemented in software including the FFT module in order to compare their 

performances to the custom HDL implementation.  The software was coded using C++ 

language and was compiled using the software development kit (SDK) provided within 

the Xilinx Platform Studio (XPS).  Each component was implemented using both floating 

point and fixed point data format whenever possible.  The software and hardware 

implementations perform the same functionality; both perform an FFT, frequency 
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detection, and then calculate the estimated DOA using the Bartlett DOA estimation.  

Figure 4.2 shows the flowchart for the software implementation. 

 

Begin

Channel = 0

Channel < 8?

Read XN Block memory
(1024 of 8bits data points)

Convert Data to Floating 
point format

Yes

Multiply Samples by 
hanning window

Bit reverse

FFT

Channel = 0?

Detect max bin (Find the 
frequency of the signal)

Store complex 
representation of the 

signal in Vector X 
(amplitude gain and 

phase shift)

Yes

No

Calculate Power by 
multiplying Weights 

Matrix (W) by the Signal 
Vector (X)
P = W * X

Find the element of P that 
has the maximum magnitude

Calculate the Angle

End

No

Channel++

 
Figure 4.2 The flowchart for the software implementation of the DOA estimation. 



 
 

46 

Implementation Details 

The first step in the software implementation was to transfer the sampled data 

from the memory block holding the samples to the MicroBlaze internal memory.  This 

was handled through a customized peripheral that creates registers in the MicroBlaze and 

maps them to the memory blocks in the FPGA that are holding the sampled data.  This 

allowed the data to be loaded by accessing the address registers in the MicroBlaze and 

loading the corresponding data. 

The soft FFT was implemented using an iterative approach to avoid recursion 

which could cause stack overflow due to the many function calls that are needed in the 

computation process.  The algorithm required bit-reversal on the input addresses to 

rearrange data to match a format that the iterative FFT algorithm requires. The following 

pseudo-code describes the bit-reversal algorithm: 

Pseudo Code 1: Bit reversal 

1: n  Length of FFT 

2: for k  0 to n - 1 

3: do A[rev(k)]  a
k 

 

 
where rev(k) is a function that will reverse the bits forming the binary representation of 

the integer k.  For example, if k = (a3,a2,a1,a0)2 then rev(k) will return (a0,a1,a2,a3)2. 

 
The rearranged data was then sent to the FFT algorithm for processing.  The 

following pseudo-code describes the iterative FFT implementation: 
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Pseudo Code 2: Fast Fourier Transform 

1: n  Length of FFT 

2: for s  1 to log
2
n 

3: do m  2
s
 

4: ω
m
  e

2πi/m
 

5: for k  0 to n-1 by m 

6: do ω  1 

7: for j  0 to m/2 – 1 

8: do t  ω A[k + j + m/2] 

9: u  A[k + j] 

10: A[k + j]  u + t 

11: A[k + j + m/2]  u – t 

12: ω  ω  ω
m 

13: return A 

 
This iterative FFT algorithm runs in time O(n log n), and the bit-reversal also requires 

O(n log n). 

 
The software implementation of the frequency detection algorithm is essentially 

the same as the hardware implementation.  In the fixed point version, the calculations had 

to be scaled to prevent overflow due to having a fixed number of bits (32 bits when using 

an integer data type).  The following pseudo-code describes the software implementation 

of frequency detection: 
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Pseudo Code 3: Frequency Detection 

1: if current channel = 0 

2: n  Length of FFT 

3: max_bin  1 

4: fft_r  real(XK[1]) 

5: fft_i  imaginary(XK[1]) 

6: max_fft  fft_r
2

 + fft_i
2

 

7: for i = 2 to n/2 

8: do fft_r  real(XK[1]) 

9: fft_i  imaginary(XK[1]) 

10: current_fft  fft_r
2
 + fft_i

2
 

11: if current_fft > max_fft 

12: max_fft  current_fft
 

13: max_bin  i 

14: return max_bin 

 
Here real() and imaginary() return the real and imaginary parts of a complex number 

respectively.  

 
After detecting the frequency the processor loads the complex representation of 

all eight signals by setting the address bus at all channels to point at the location of the 

maximum bin that was detected on the first channel. It then loads that data into a vector 

which is used to do the multiplication with the weights matrix. 
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The Bartlett DOA estimation algorithm was implemented twice using both fixed 

point number and floating point calculations.  The following pseudo-code describes the 

software implementation of the Bartlett DOA estimation algorithm where M denotes the 

number of antenna array elements, S is the number of sectors that the space is divided 

into, X is a vector holding the complex representation of the signals coming from all 8 

channels, and W is the weights matrix. 

Pseudo Code 4: The Bartlett DOA Estimation Algorithm 

1: power  empty 8x1 vector 

2: for j  0 to M - 1 

3: do for k  0 to S - 1 

4: do power[j]  power[j] + X[j] * W[J,k] 

5: angle  0 

6: max_power  magnitude(power[0]) 

7: for j  1 to M - 1 

8: do if magnitude(power[j]) > max_power 

9: angle  j; 

10: max_power  magnitude(power[j]) 

11: return angle 

 

 The angle returned by the Bartlett DOA estimation routine is sent to a module that 

interfaces with the LCD on the ML507 evaluation board to be viewed.  Once the system 

completes the computation of the DOA estimation, it enters a standby mode where it 

waits for a new DOA estimation request from the operator. 
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Hardware vs. Software Implementation Analysis 

The performance and the resource utilization of each component of the software 

implementation were examined.  Both fixed point and floating point versions were 

examined and compared to realize the time needed to perform each operation.  The FFT 

core can only perform the transform over one channel at a time (serial), since the 

MicroBlase soft processor does not have the ability to perform parallel processing unless 

accompanied with other microprocessors which is not the case in this implementation due 

to resource limitations on the selected FPGA.  The serial FFT performance was evaluated 

for both fixed point and floating point versions of the implementation.  It was found that 

the fixed point FFT required 838,600s, while the floating point FFT required 608,800s 

to complete the transform.  

The performances of both fixed point and floating point versions of the frequency 

detector and the Bartlett DOA estimation software implementations were evaluated.  The 

fixed point frequency detector required 1,007s, while it took the floating point version 

only 751s to complete the desired task.  The fixed point Bartlett DOA estimation 

required 310.4s, while it took the floating point version only 244.4s to complete the 

DOA estimation computations.   

These results are not intuitive since floating point calculations are more 

complicated and usually require more clock cycles.  This behavior can be justified by 

assuming that the processor uses designated hardware floating point multipliers to 

compute floating point calculations, while it uses the software defined multipliers to 
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perform fixed point calculations. Table 4.2 shows the performance summary for the 

software implementation of the Bartlett DOA estimation running on the MicroBlaze. 

  
Latency (μs) 

HW SW 

FFT     
- Fixed Pt     
    + Serial 274.5 838,600 
    + Parallel 34.31 n/a 
- Floating Pt     
    + Serial 357.84 608,800 
    + Parallel 44.73 n/a 
      

Freq Det     
- Fixed Pt 10.3 1,007 
- Floating Pt n/a 751 
      

Bartlett     
- Fixed Pt 1.73 310.4 
- Floating Pt n/a 244.4 
      

MicroBlaze   684,000 
      

Table 4.2 The performance summary for the software implementation of the Bartlett DOA estimation 
running on the MicroBlaze 

 

This table shows the dramatic performance improvement that custom HDL 

hardware gives the system.  The most significant performance improvement comes in the 

FFT calculation with the custom HDL performing 3,000 times faster than the software 

implementation when comparing a single FFT operation.  Area usage is considerably less 

when using the MicroBlaze soft processor due to using a single fixed resource.  Table 4.3 

shows the resource utilization summary for the system implementation comparing the 

custom HDL to the software implementation.  
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Resources Estimation 

Slices 
Slice 

LUTs LUTRAM 
XtremeDSP 18K Block 

Register Slices RAM 
FFT             
- Fixed Pt             
    + Serial n/a n/a n/a n/a 9 7 
    + Parallel 3347 10172 7434 1147 72 20 
- Floating Pt             
    + Serial n/a n/a n/a n/a 24 18 
    + Parallel n/a n/a n/a n/a 192 144 
              
Freq Det             
- Fixed Pt 15 27 18 0 2 0 
              
Bartlett             
- Fixed Pt 58 200 165 0 0 0 
              
MicroBlaze 1494 2172 2349 69 5 64 

              
Table 4.3 The resource utilization summary for the system implementation comparing the custom HDL to 

the software implementation. 
 

Engineering development time is another important consideration when 

investigating effective HW/SW partitioning.  The hardware implementation took 7 

months to implement by a full time graduate student at MSU compared to 3 months for 

the software implementation. 

By observing the performance estimation, it is realized that an FFT hardware 

implementation is required to achieve practical performance of the system.  It is 

important to understand the tradeoffs in accuracy, performance, and resource utilization 

of implementing a fixed point or a floating point FFT.  The next section will give more 

in-depth study about hardware FFT implementations. 
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Hardware Fast Fourier Transform Analysis 
 

 
The Fast Fourier Transform (FFT) is an efficient algorithm to compute the 

Discrete Fourier Transform (DFT).  FFT is a widely used algorithm for frequency domain 

analysis in almost any signal processing application related to digital communications 

and image processing.  Some applications require that precision, resources available and 

speed of the computation meet certain specifications.  Hence, determining which 

implementation to be used plays an important role in meeting the design requirements.   

There are many FFT implementations that are often used, such as the Cooley-

Tukey algorithm which was a major breakthrough in the mid-sixties [36].  The 

development of the Fast Hartley Transform and Split-Radix algorithm followed 

afterwards.  The Quick Fourier Transform and the Decimation-in-Time-Frequency 

algorithms were recently developed [32, 33].  

 Extensive research has been conducted by other researchers to optimize these 

algorithms in terms of speed. This has resulted in complex architectures that requires 

multi-level caches, super-pipelined processors, and long-word instruction sets [32].  

These architectures made it very difficult to implement most of these algorithms in a 

traditional microprocessor since they have a fixed architecture that is predefined and also 

a specific instruction set that accepts constant length inputs.  FPGAs are an ideal platform 

for implementing these algorithms due to their inherent flexibility to create custom 

hardware processing cores.  Also, FPGAs allow for the expansion of the registers used to 

store outputs when precision needs to be preserved to assure accuracy.  In addition, 
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FPGAs enable the designer to mix different architectures or different implementations, 

(i.e. hardware and software implementations [35]). 

 This thesis will present the implementation of the Cooley-Tukey FFT algorithm 

and investigate the tradeoffs between a fixed point versus a floating point 

implementation.  Also, it shows the effect of oversampling a sinusoidal input signal on 

the output noise of the FFT processor in both cases of fixed and floating point 

implementations.  The transforms will be performed on a 2x, 4x, and 8x oversampled 

signal. 

 
Fast Fourier Algorithm 

 
 The definition of the Discrete Fourier Transform (DFT) is shown in equation 
(4.16). 
 

𝑿 𝑘 =   𝑥𝑛𝑒
−𝑗2𝜋

𝑁
𝑘𝑛

𝑁−1

𝑛=0

 (4.16) 

 
where N is the transform length, and k is an integer ranging from 0 to N-1. 

 The DFT algorithm is O(N2) as shown in equation (4.16), where N is the number 

of inputs and also the transform length.  In the Radix-2 decimation in time (DIT) 

approach the N points are decomposed into two transforms as shown in equation (4.17).  

𝑿 𝑘 =   𝑥2𝑚𝑒
−𝑗2𝜋

𝑁
𝑘(2𝑚) + 

𝑁/2−1

𝑚=0

 𝑥2𝑚+1𝑒
−𝑗2𝜋

𝑁
𝑘(2𝑚+1)

𝑁/2−1

𝑚=0

 (4.17) 

 
where 𝑥2𝑚 , 𝑥2𝑚+1  are the even and odd indexed inputs respectively. 

Each of the two transforms shown in equation (4.17) would compute the DFT of 

the even indexed and odd indexed parts of the whole set of the input sequence, which 
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results in an N/2 computation for each transform and a total complexity of O(N2

2
).  By 

observing the complex exponential part of the equation, additional simplifications can be 

performed which is shown in equations (4.18, 4.19). 

𝑒
−𝑗2𝜋

𝑁
𝑘 2𝑚+1 

=  𝑒
−𝑗2𝜋

𝑁
𝑘 2𝑚 

 ∙   𝑒
−𝑗2𝜋

𝑁
𝑘  (4.18) 

where 𝑒
−𝑗2𝜋

𝑁
𝑘  is constant over each X[k] output 

Hence, 

𝑿 𝑘 =   𝑥2𝑚𝑒
−𝑗2𝜋

𝑁
𝑘(2𝑚) +  𝑒

−𝑗2𝜋
𝑁

𝑘

𝑁/2−1

𝑚=0

 𝑥2𝑚+1𝑒
−𝑗2𝜋

𝑁
𝑘(2𝑚)

𝑁/2−1

𝑚=0

 (4.19) 

 

Therefore, only the term 𝑒
−𝑗2𝜋

𝑁
𝑘 , which is called the twiddle factor, needs to be 

calculated one time over each output of the FFT.  Also the term 𝑒
−𝑗2𝜋

𝑁
𝑘(2𝑚)  will be the 

same for both 𝑥2𝑚  and 𝑥2𝑚+1, a property that can be exploited to reduce the amount of 

computations.  This optimization contributes in a reduction of the total time needed to 

compute the FFT algorithm as well as a reduction in the number of complex multipliers 

required to compute the complex exponential terms.  This is repeated recursively until a 

set of transforms are achieved where each would run on two inputs only.  Therefore, the 

complexity of the algorithm is in the order of O(𝑁 log2 𝑁) [36-38].  Figure 4.3 shows the 

flow diagram of an 8-point FFT implementation.  Figure 4.4 shows the Xilinx Radix-2, 

Burst I/O FFT architecture which uses one Radix-2 butterfly processing engine [40]. 
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Figure 4.3 An 8-Point FFT diagram showing the required stages and butterflies needed to complete the FFT 
transform. 

 
 

 
Figure 4.4 Xilinx Radix-2, Burst I/O butterfly implementation. 
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FFT Implementation and Testing 
 

  The system was developed to perform FFT analysis on a 1.5625 MHz sinusoidal 

input with 0.5v amplitude.  The system was built in a way that allows for fair comparison 

between fixed point and floating point implementations.  The output of the system is 

observed by inserting a Chipscope Integrated Logic Analyzer (ILA) in the design.  The 

Chipscope ILA reads the contents of the memory where the input samples and the output 

of the FFT and IFFT transforms are stored.  Figure 4.5 shows the block diagram for the 

custom VHDL hardware implementation of the FFT/IFFT system.  
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(Custom fabric)

Block Fixed 
Point FFT

(Custom fabric)

Coming from 
ADC Board

Block RAM
1024x8

Re
Block RAM

1024x32
Re

Block Floating 
Point FFT

(Custom fabric)

Block RAM
1024x32

Im

Block RAM
1024x32

Re

Block RAM
1024x32

Im

Block Fixed 
Point IFFT

(Custom fabric)

Block Floating 
Point IFFT

(Custom fabric)
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Im

Re

Im

Block RAM
1024x32
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Block RAM
1024x32

Im

Block RAM
1024x32
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Block RAM
1024x32

Im

Chipscope Integrated Logic Analyzer

 

Figure 4.5 Block diagram of custom VHDL hardware shows the data flow through the FFT/IFFT blocks. 
  

 
Once the ADC acquires 1024 data points, it stores the samples in a 1024x8bits 

memory block that is accessible by two FFT processors (a fixed point and a floating 

point).  A signal declaring the completion of the sampling stage starts both FFTs at the 

same time.  Each FFT block has its own state machine which configures the block to 

perform the FFT on the input signal.  The input of the FFT is expanded into 32-bits to 

feed the fixed point FFT core, and is converted into a single precision floating point 

format to feed the floating point FFT core.  The reason a 32-bit fixed point FFT core is 
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used to perform the transform is to have a fair comparison between the sizes of the inputs 

and the outputs. However, the precision is not the same in both implementations due to 

the difference between floating point and fixed point implementations.  

 Upon the completion of each of the forward FFT transforms, both the real and the 

imaginary outputs of the FFT cores are stored in a 102432 memory block.  The floating 

point outputs are converted into fixed point numbers and then stored in the memory to 

make it easy to interpret the outputs using Chipscope, which only recognizes fixed point 

numbers.  The conversion process takes into consideration preserving the precision of the 

floating point numbers when converting into fixed point numbers.  Once the data is 

stored, the same FFT cores are configured to perform an inverse FFT transform and 

generate an output that in theory should match the digitized signal. 

 
Results and Analysis 

 
 This section consists of three parts; performance analysis, resource estimation, 

and precision comparison.  The results of both the performance analysis and the resource 

estimation are directly related to the DOA estimation implementation due to the nature of 

this thesis.  The precision comparison will be used to determine whether a floating point 

FFT is required in the implementation of the digital DOA estimation system or a fixed 

point FFT implementation will be sufficient.  Figure 4.6 shows the time needed to 

perform the forward FFT for each of the fixed point implementation (4.6-1) and the 

floating point implementation (4.6-2). It also shows the time needed to perform both the 

forward and inverse FFT for each implementation as shown in (4.6-3, 4.6-4). 
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Figure 4.6 Oscilloscope output shows time required to perform the transform.  
 

It was found that the floating point FFT requires 10.35μs more time to complete 

the transform, which matches the Xilinx datasheet that relates the delay to the time 

required to transform the floating point inputs into fixed point and vice versa for the 

output data.  The reason behind this is that the floating point Xilinx FFT core utilizes a 

higher precision fixed point FFT to achieve similar noise performance to a full floating 

point FFT with significantly fewer resources [40].  Figure 4.6 also shows that the time 

required to perform both forward and inverse FFTs is twice the time needed to perform 

the forward FFT.  This means that inverse FFT is identical to the forward FFT in terms of 

the implementation.  

 The fixed point FFT implementation achieves better results in terms of execution 

time.  The same trend was observed when looking at the resources utilization.  Floating 

point implementation uses more resources than the fixed point implementation.  The 
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main concern in terms of resources used is the number of XtremeDSP slices required.  

These resources are slices optimized to do certain mathematical operations such as 

multiply, multiply and accumulate, multiply add, etc [40].  Another reason is that the 

number of block RAMs used, because they are one of the most expensive elements to get 

in the FPGA.  The two implementations use the same number of XtremeDSP slices, 

which depends mainly on the phase factor width (24-bits).  The floating point FFT block 

uses more block RAMs which is related directly to the data width of the core.  Table 4.4 

shows the amount of resources used by each FFT implementation. 

    

Latency (μs) Resources Estimation 

HW Slices Slice Register LUTs LUTRAM 
XtremeDSP Slices 18K Block Ram 

HW HW HW HW HW HW 

Fixed Point 
FFT 34.64 s 1431 3799 2225 606 40 8 
                  
Floating Point 
FFT 44.99 s 2090 5434 3499 478 40 12 

                

Table 4.4 Resources estimation summery for Hardware FFT Implementations and time required to perform 
forward FFT.   

 

 Precision and accuracy analysis were done by comparing the output data of the 

IFFTs.  The reason for this is that the output of the IFFT includes precision information 

from both FFT and IFFT transforms, because the IFFT is performed on the output data of 

the FFT.  The IFFT outputs were exported from Chipscope to MATLAB® and then 

plotted and compared with MATLAB®’s builtin FFT function. The results from the 

Xilinx cores were compared with the MATLAB® FFT output, which produces high 

precision outputs due to the high precision in MATLAB®.  Figures 4.7, 4.9, and 4.11 
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show both the real and imaginary parts of the IFFT output which in each figure were 

calculated using MATLAB®’s built-in FFT function, Xilinx fixed point FFT, and Xilinx 

floating point FFT respectively.  Figures 4.8, 4.10, and 4.12 show one cycle of the real 

part of the output of the IFFT for each sampling rate used. 

 

Figure 4.7 Output of IFFT at an 8x sample rate 
(12.5MSPS). 

 

Figure 4.8 One cycle of the real output of IFFT at 
an 8x sample rate (12.5 MSPS). 
MATLAB® FFT in red, fixed point 
FFT in blue, floating point FFT in 
green.  

 

Figure 4.9 Output of IFFT at a 4x sample rate 
(6.25MSPS). 

  

 

 

Figure 4.10 One cycle of the real output of IFFT 
at a 4x sample rate (6.25 MSPS). 
MATLAB® FFT in red, fixed point 
FFT in blue, floating point FFT in 
green. 
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Figure 4.11 Output of IFFT at a 2x sample rate 
(3.125MSPS). 

 

Figure 4.12 One cycle of the real output of IFFT 
at a 2x sample rate (3.125 MSPS). 
MATLAB® FFT in red, fixed point 
FFT in blue, floating point FFT in 
green. 

 
 

The results show that a floating point FFT produced more accurate results 

compared to the fixed point FFT with respect to the MATLAB® FFT function.  The 

output of Xilinx floating point FFT (green) exactly matches the output of MATLAB® 

FFT (red); however, the output of the Xilinx fixed point FFT (blue) has a small 

discrepancy due to lack of enough precision in the fixed point FFT implementation. 

When comparing the effect of the different sampling rates on the system, it is noticeable 

that the noise in the imaginary part is smaller at 8x sampling rate as depicted in Figures 

4.7, 4.9 and 4.11.  This indicates that the precision of the output of the fixed point 

implementation is improved at higher sampling rates. 

Forward FFT precision was also examined by observing the outputs of the 

forward FFTs and then comparing them with the MATLAB® built-in function.  The 

magnitude of the output of the fixed point FFT implementation matches those of the 

floating point implementation and MATLAB® FFT function.  On the other hand, it is 

noticeable that there is a discrepancy in the phase shift in the case of the 8x and 2x 
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sampling rates in the fixed point FFT, while it matched the other implementations at the 

4x sampling rate.  This can be justified by studying the effect of scaling the output of 

each butterfly in the fixed point FFT implementation which is done to prevent overflow.  

The effect of scaling is not covered by the scope of this thesis.  The main reason behind 

this improved performance in the forward FFT computations over the inverse FFT 

computations is that the inverse FFT accumulates errors from the forward FFT and then 

performs the transform over the output, which includes the errors from the forward FFT.  

Therefore, it is noticeable that the error in the inverse FFT is larger by an order of 

magnitude.  Figures 4.13, 4.14 and 4.15 show the magnitude (left) and phase shift (right) 

of the FFT output in each implementation for each sampling rate (3.125 MSPS, 6.25 

MSPS, and 12.5 MSPS). 

 

Figure 4.13 Output of FFT at an 8x sample rate (12.5 MSPS). 
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Figure 4.14 Output of FFT at a 4x sample rate (6.25 MSPS). 
 
 
 

 

Figure 4.15 Output of FFT at a 2x sample rate (3.125 MSPS). 
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 As mentioned earlier, Xilinx uses a higher precision fixed point FFT core to 

mimic the behavior of a real floating point FFT implementation.  This technique saves 

resources but adds some latency in the process of converting the input from fixed to 

floating point and vice versa.  More research is required to investigate whether a real 

floating point FFT implementation is worth being used since it can be replaced by a 

higher performance, faster and more accurate fixed point FFT implementation.  

Nevertheless, applications will set the specifications for the precision of the FFT 

algorithm based on the amount of resources available and the overall required accuracy 

of the system.   

For the hybrid implementation of the DOA estimation system, it is clear that a 

smaller fixed point FFT implementation is needed because of the need to implement one 

FFT core for each channel for a total of 8 FFT cores.  The selected Virtex-5 FX70T 

FPGA does not have enough resources to implement 8 floating point FFT cores.  In terms 

of precision, the fixed point FFT delivers comparable precision to its floating point 

counterpart.  This indicates that the fixed point FFT implementation has enough precision 

to run an accurate DOA estimation. 
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Hybrid Implementation 
 

A dramatic improvement in performance was observed in the hardware 

implementation compared to the software approach (3,000 times faster) while area 

consumption was less for the soft processor approach.  The development time for the 

hardware implementation was approximately 4 times greater than the software approach.  

The analysis presented in this chapter provided an insight into the most effective 

partitioning between hardware and software.  An effective hybrid approach was found.  

The hybrid system is able to perform the required tasks in a timely manner, while using a 

reasonable amount of resources and can be developed in a reasonable amount of time.   

The hardware components of the hybrid system were the FFT and the frequency 

detection components, since they both were proved as shown earlier, to have a dramatic 

improved performance compared to their software implementation counterparts.  In 

addition to performance, the FFT and frequency detection components are DOA 

estimation algorithm independent, meaning that no future modification is required in 

order to provide a platform to implement different DOA estimation algorithms. 

In the hybrid system, the MicroBlaze processor is responsible for performing the 

DOA estimation algorithms since it takes a long development cycle to implement 

different DOA estimation algorithms using custom HDL.  Figure 4.16 shows the final 

hybrid implementation. 
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Figure 4.16 The final hybrid implementation block diagram including the MicroBlaze soft processor. 
 

 
 The hybrid approach showed a balanced tradeoff between the hardware and the 

software implementations.  While performing the DOA estimation in a timely manner, 

the hybrid development time is reasonable and fast.  While the hybrid system 

performance was about 30 times slower than hardware, it was about 620 times faster than 
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the software implementation.  The hybrid implementation used 1.5 times more resources 

than the hardware implementation and 5 times more resources than the software one.  

Table 4.5 shows the performance and resource utilization comparison between the 

custom HDL-based, the soft processor-based, and the hybrid combination 

implementations. 

 
Table 4.5 The performance and resource utilization comparison between custom HDL-based, soft 

processor-based, and a hybrid combination implementations. 
 
 

The hybrid approach provides a flexible back-end solution which allows for post 

processing and future enhancements.  
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CHAPTER 5 

 
MVDR DOA ESTIMATION 

 
As mentioned earlier, the key to MVDR DOA estimation is to minimize the 

output power of the system in all directions except the one that points to the desired 

signal direction.  This process is repeated as  is swept from 0 to 360.  This method 

provides an estimate of the power density spectrum over entire the field of view of an 

array.  It uses the array weights which are obtained by maximizing the mean output 

power in the direction of interest.  While the MVDR DOA estimation algorithm is more 

computationally expensive and requires the calculation of the inverse of the covariance 

matrix, it outperforms the Bartlett method in terms of resolution. 

 
MVDR Algorithm 

 
The Output power equation was found earlier in (4.10).  The output power of the 

system is minimized except in the direction of the desired signal direction:  

min
𝑤

𝒘𝐻𝑹 𝒘   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝒘𝐻𝒂   = 1 (5.1) 

The MVDR DOA estimation weight vector is found to be: 

𝒘𝑀𝑉𝐷𝑅 =  
𝑹 −1𝒂  

𝒂𝐻  𝑹 −1𝒂  
 (5.2) 

Thus, the MVDR DOA estimation output power spectrum is 

𝑃 =  
1

𝒂𝐻  𝑹 −1𝒂  
 (5.3) 
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A peak search is performed over the power spectrum to find the maxima which 

represent the estimated DOAs of the incoming signals. 

To ensure accurate operation of the MVDR DOA estimation, the covariance 

matrix R is constructed using multiple averages of the sampled signal. 
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Hybrid Implementation 

 
The MVDR DOA estimation system was implemented using a hybrid approach 

where both custom HDL and a soft processor were used to implement the system.  The 

main system controller, the ADC driver, the FFT, and the frequency detector were 

implemented using custom HDL.  The routines needed to perform the MVDR DOA 

estimation algorithm were implemented using software running on the MicroBlaze soft 

processor which operated at a 100MHz clock rate.  Figure 5.1 shows the block diagram 

for the implementation of the MVDR DOA estimation system. 
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Figure 5.1 Block diagram of the MVDR DOA estimation implementation. 



 
 

72 

Implementation Details 

 The main difference between the MVDR DOA estimation implementation and the 

Bartlett counterpart is that the MVDR estimation components are all controlled through a 

main system controller that handles sending the interface signals between the different 

components.  However, in the Bartlett DOA estimation implementation, components 

were interfacing with each other directly. 

 The main controller is responsible for synchronizing all of the digital components 

together by reading their control signals and sending the required signals back to each 

component to enable it to operate properly.  It also pipelines the overall system and 

ensures maximum utilization of the available components implemented.  The main 

controller consists of two state machines that pass signals between each other and share 

the tasks that are required for proper operation.  The two state machines together form a 

system that is able to acquire new samples, perform FFT analysis, detect the frequency, 

and control the soft processor simultaneously.  This improves the overall performance 

since it enables the system to process the available data without the need to wait for all of 

the required data to be present in local memory.   

 Since MVDR requires multiple samples, the system controller will be able to 

sample new data, then perform FFT to process and analyze the sampled data while at the 

same time start a new sampling process.  Also, once an FFT operation is completed, the 

state machines will trigger the frequency detection component to start searching while at 

the same time the state machine will start the FFT to analyze a new stream of data.  

Figure 5.2 shows the flowchart of the two state machines running in the main controller. 
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Figure 5.2 The flowchart of the two state machines running in the main controller. 
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The MVDR DOA estimation system has two operation modes; burst and 

continuous modes.  These two modes can be configured in real-time using the GPIO DIP 

switch 3 on the ML507 evaluation board.  In the burst mode, the system controller waits 

for the user or a third party device to request a new DOA estimation.  In the continuous 

mode, the system controller runs the DOA estimation continuously while updating the 

estimated DOA of incoming signals every time the estimation is completed.  The system 

also has two sampling rates; a fast sampling rate that runs at 25 MSPS and a slow 

sampling rate that runs at 12.5 MSPS.  The system can be configured to operate in either 

sample rate in real-time using the GPIO DIP switch 1. 

The system begins by starting the sampler which configures the ADC board and 

sets it up to send samples at the desired sampling rate in offset binary format (refer to 

chapter 4 for details about the offset binary).  Once the ADC board starts streaming data 

into the FPGA, the sampler collects the stream of bits and stores them into a 1024x8bit 

sample memory as a group of bytes each representing one sample.  Once 1024 samples 

are acquired, the sampler sends a signal to the main controller dictating the completion of 

the sampling stage.  

The main controller starts the FFT module to perform the FFT analysis over the 

sampled data stored into memory after the completion of the sampling stage.  The 

controller then waits for a signal from the FFT module once it loads the samples from the 

memory into the FFT for processing.  The controller then starts a new sampling stage 

since the samples in the memory are no longer needed and can be overwritten.  

Therefore, both the FFT core and the sampler will be functioning simultaneously which 
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saves time and utilizes the available resources efficiently.  The sampler will store the new 

samples into the memory and wait for the FFT to load them before starting a new 

sampling stage.  In the meantime, the main controller waits for the FFT module to 

complete the current processing stage.  It then triggers the frequency detection module 

which runs only at the first round to detect the frequency of the incoming signal and then 

the frequency information will be used for the rest of the sampling rounds.  

The next step is to trigger the soft processor to start building the covariance 

matrix using a systolic matrix computer implemented in software running on the 

processor.  The systolic computer performs the matrix multiplication efficiently and 

quickly by feeding the data into the multipliers in a manner that allows the neighboring 

multipliers to use the loaded data without the need to reload it again.  The systolic 

processor was customized to start processing once the first burst of data is available, 

which adds another level of pipelining to the system.  This way, the sampler, the FFT, 

and the soft processor are all pipelined and simultaneously processing data.   

The system was designed to acquire 128 sampling rounds and perform FFT on 

them and pass the results to the processor to calculate the covariance matrix R.  Once R is 

constructed, the processor performs matrix inversion using a Gaussian-Elimination 

algorithm, which was proved to outperform other techniques such as QR Decomposition 

when the antenna array size is 8 elements [39].  Afterwards, the processor computes the 

power by computing equation (5.3), which includes calculating the weights matrix which 

is of size 360x8.  Figure 5.3 shows a flowchart of the software running on the MicroBlaze 

soft processor. 
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Figure 5.3 Flowchart of the software running on the MicroBlaze soft processor. 
 

Results 

 The MVDR DOA estimation performed accurate DOA estimation.  It was able to 

detect the simulated angles of arrival of the incoming signals from the setup signal 

generators.  The LCD on the ML507 evaluation board showed the estimated DOA as well 
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as the frequency of the IF signal.  Figure 5.4 shows the LCD displaying the estimated 

DOA at 90 and the frequency of operation is 2.008 MHz. 

 

Figure 5.4 The LCD displaying the estimated DOA at 90 and the frequency of operation is 2000.8 KHz. 
  

 The system stores the power spectrum versus angle in a 10248 memory block 

for use by a third party system such as a beam former board in order to know where to 

form beams towards users and nulls towards interferences.  Each user’s directional 

information shows as a peak in the power spectrum as well as interferers.  The beam 

former system has the ability to distinguish between users of interest and interferences 

through a predefined signature or by handshaking.  False peaks can show in the power 

spectrum but they have significantly lower power than real peaks.  False peaks can be 

ignored by setting a certain threshold where peaks lower than that threshold will be 

ignored.  Figure 5.5 shows the power spectrum versus angle for a DOA estimation run 

that detected a user at 90.  Figure 5.6 shows the power spectrum versus angle for a DOA 

estimation run that detected two users at 90 and 260. 
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Figure 5.5 Power spectrum versus angle showing a peak at 90 that represent a user at that direction. 
 
 

 
Figure 5.6 Power spectrum versus angle showing two peaks at 90 and 260 that represent users at those 

directions. 
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 The dynamic range issues depicted in Figures 5.5 and 5.6 are due to the 

quantization required to store the output data in 8-bit wide memory locations.  The power 

spectrum is calculated using floating point numbers; however, the application requires 

storing the output of the power in an 8-bit fixed point format to be readable by a beam 

former board.  The 8-bit fixed point has low dynamic range properties which caused the 

artifacts showing in the figures such as the flat peaks.  This issue can be solved by 

increasing the size of memory that the power spectrum can be stored in and reconfigure 

the beam former board to be able to receive the corresponding data size. 

 
Performance Analysis 
 

The performance and the resource utilization of each component of the MVDR 

DOA estimation implementation were examined.  The hybrid system consisted of two 

parts; the custom HDL components which were implemented using VHDL and the soft 

processor components which were implemented using the C++ language.  The custom 

HDL components were optimized and pipelined to run in efficiently and complete the 

assigned task in a timely manner.  The process of acquiring samples, performing FFT, 

and performing frequency detection for 128 rounds requires 7,868s, which is 61.5s per 

round. 

The different routines running on the soft processor were examined individually 

to determine how long each routine would take to complete its desired task.  The 

covariance matrix R calculation took 36,160s.  The computation of the inverse of the 

covariance matrix R-1 took 5,972s.  The computation of the power spectrum took 

102,400s.  The time required to normalize the power and convert it to decibels was 
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137,300s.  Also the weights matrix was computed on the fly, which required 851,400s, 

which is a considerably long time compared to the rest of the components of the system.  

It is important to keep in mind that the weights matrix computations can be done in 

MATLAB® and then loaded into memory on the FPGA to save the time needed to 

compute them on the fly.  Table 5.1 shows the performance summary for the MVDR 

DOA estimation hybrid implementation.  Table 5.2 shows the resource utilization 

summary for the system implementation showing both the custom HDL and the 

MicroBlaze. 

 

  Latency 
(μs) 

      
Custom HDL 7,868 

Included:   
Sampling, FFT, and   
Frequency Detection   

    
    
MicroBlaze   

R 37,200 
R_inv 5,972 
Power 102,400 

Normalizing Power 137,300 
Weights 851,400 

    
 

Table 5.1 The performance summary for the MVDR DOA estimation hybrid implementation. 
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Resources Estimation 

Slices 
Slice 

LUTs LUTRAM 
XtremeDSP 18K Block 

Register Slices RAM 
Custom HDL             
 + Sampler 132 246 61 0 0 0 
 + FFT 3734 10201 7445 1147 72 19 
 + Frequency Det. 180 546 410 2 0 0 
              
MicroBlaze 1,695 2,092 2,238 69 5 32 

              
 

Table 5.2 The resource utilization summary for the system implementation showing both the custom HDL 
and the MicroBlaze. 

 
 

In this implementation, the weights matrix, which is independent of the users’ 

information, is calculated in the soft processor to save resources; however, this approach 

added sustained latency to the system.  This can be optimized by calculating the weights 

either using MATLAB®, or once the system has booted, and then store them in a 

memory block to be used every time DOA estimation is requested.  Using this technique, 

the total time required by the system to perform MVDR DOA estimation is 289,700s.  

This time can be optimized and decreased by reducing the number of averages MVDR 

needs to perform.  In this implementation, a total of 128 averages were performed, so 

reducing this number would improve the performance; however, it needs to be tested for 

proper functionality and precision. Reducing the number of averages will only save time 

calculating the FFTs and constructing the covariance matrix, but it will not affect the time 

needed to calculate the inverse of the covariance matrix, the power, and the normalized 

power. 
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Hardware Implementation of a Covariance Matrix Computer 

 
In order to provide an insight into the performance of a custom HDL-based DOA 

estimation system, a systolic-based custom hardware computer was implemented using 

VHDL.  The implementation exploited both the robustness of systolic array methods and 

the ability to pipeline the computations to speed up the performance.  The covariance 

matrix computer consists of a main state machine controller, one complex multiplier core 

generated using Xilinx Core Generator, one adder, and two multiplexers.  Figure 5.7 

shows the block diagram of the custom HDL systolic computer. 
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Figure 5.7 The block diagram of the custom HDL systolic computer. 
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 The state machine controls each of the memory addresses, the multiplexers, and 

the write to memory signals.  The state machine pick which address to point at based on 

an intelligent algorithm that imitate an actual systolic array computer but with less 

resource utilization since the traditional array computers use multiple multipliers; 

however, in this design, one multiplier is used.  Also the algorithm can do the conjugate 

transpose of the input matrix through an address conversion method applied to the 

original matrix stored in the memory block.  This improves the performance and saves 

resources (See Appendix B).  Figures 5.8 and 5.9 show the flowcharts of the state 

machine.  
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Figure 5.8 The first part of the flowchart of the state machine. 
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Figure 5.9 The second part of the flowchart of the state machine. 
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Xilinx ISim was used to simulate the design and test its functionality and 

performance.  The systolic-based computer required 580s to complete the computation 

of the covariance matrix.  This is 64 times faster that software covariance matrix 

computer running on the MicroBlaze.  Table 5.x shows the performance and resource 

utilization comparison between custom HDL-based and the software-based 

implementations of the covariance matrix computer. 

  Latency 
(μs) 

Resources Estimation 

Slices 
Slice 

LUTs 
XtremeDSP 18K Block 

Register Slices RAM 
R  Matrix              

Computation             
              

Custom HDL             
~ without pipeline 580 151 240 309 4 0 
~ with pipeline 16.1 151 240 309 4 0 

              
MicroBlaze 37,200 1,695 2,092 2,238 5 32 
              

Table 5.3 the performance and resource utilization comparison between the custom HDL-based and the 
software-based implementations of the covariance matrix computer. 

 

The custom-HDL computer also has the ability to pipeline with the FFT module, 

which will divide the computation of the covariance matrix into sections each of these 

sections requires a maximum of 4.53s which is less than the time required to perform 

the FFT transform (34.31s).  This means that the computation of the covariance matrix 

in hardware happens in the background while the FFT transform is being computed 

except for the last stage of computing the covariance matrix (special stage since all FFTs 

are completed and all data is present) which requires 16.1s to complete.  
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CHAPTER 6 

 
FUTURE WORK 

 
 Work can be done to improve the current MVDR DOA estimation 

implementation by optimizing components within in the system.  An important 

optimization that needs to be done is storing the pre-calculated weights into a memory 

block (RAM or ROM).  MATLAB® can be used to calculate the weights matrix and then 

the results can be stored in a read-only memory (ROM).  Otherwise, the microprocessor 

has to calculate the weights and store them in a random-access memory (RAM) 

implemented on the FPGA.  This leads to excessive computation time within the system. 

 Since the number of averages can affect the performance and the accuracy of the 

DOA estimation system, it will be more efficient to implement a feature that allows real-

time configuration of the number of averages needed to compute the covariance matrix.  

Using a smaller number of averages yields faster system operation; however, it might 

affect the accuracy of the system output.  A simulation study is needed to analyze the 

tradeoffs of increasing or decreasing the number of averages. 

 The system is ready to implement other DOA estimation algorithms such as 

ESPRIT and MUSIC.  Since all of these algorithms are based upon computing the inverse 

of the covariance matrix, the implementation of those algorithms will require changes on 

the software implemented on the MicroBlaze, which is significantly faster to implement 

and debug than custom HDL implementations. 
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 Furthermore, additional tests and experimentations need to be done to compare 

the accuracy of each of the implementations (custom HDL-based, software-based, and 

hybrid).  These tests should also examine each implementation for its susceptibility to 

noise and whether one has more immunity to low signal-to-noise (SNR) ratio than the 

others.   

 Finally, the digital DOA estimation system needs to be integrated with the entire 

smart antenna system and tested for functionality and proper operation.  The digital DOA 

estimation system is ready to enter this stage; however, some calibration capabilities 

might need to be implemented in the MicroBlaze to compensate for variance errors due to 

antenna and RF circuit errors, mutual coupling between antenna array elements, and 

distortion of antenna locations.  Once the integration is completed, the system can be 

tested in the anechoic chamber or out in the field.  Figure 6.1 shows an anechoic 

chamber. 

 

Figure 6.1 An anechoic chamber. 



 
 

90 

CHAPTER 7 
 
 

CONCLUSION 
 

 In this thesis, a performance and resource analysis of the digital implementation 

of DOA estimation algorithms (Bartlett and MVDR) was studied.  The digital DOA 

estimation system is designed to be part of an entire smart antenna system being designed 

at Montana State University.  The goal of this thesis is to achieve a system that balances 

between the performance, resource utilization, and development time.   

In the Bartlett DOA estimation implementation it was found that a custom HDL 

implementation yields a high performance system (required 46s to estimate the DOA) 

but utilizes more resources than its software counterpart, and requires a longer 

development time (8 months).  On the other hand, a software implementation was found 

to have slower performance (839,917s), but utilized the least amount of resources and 

required less development time (3 months).  This means that the custom-HDL is faster 

than the software implementation by a factor of 20400.  A hybrid variation that 

balanced the two implementations (custom HDL and software) was achieved which had 

reasonable performance (30 times slower than custom HDL implementation and 620 

times faster than software implementation), resource utilization, and development time. 

In the MVDR DOA estimation implementation, the hybrid approach was used 

since in the Bartlett DOA estimation system it was proved that a hybrid approach was the 

optimum balance between custom HDL and microprocessor based implementations.  The 

MVDR DOA estimation system estimates the DOA in 290,740s, and fits in the Xilinx 
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FX70T FPGA.  Also MVDR showed improved resolution over the Bartlett DOA 

estimation system as well as increased features to the DOA estimation such as detecting 

multiple sources and interferences.  
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APPENDIX A 
 
 

BARTLETT DOA ESTIMATION SYSTEM DETAILED BLOCK DIAGRAM 
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Figure A.1 The first part of the detailed Bartlett DOA estimation system. 
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Figure A.2 The second part of the detailed Bartlett DOA estimation system. 
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Figure A.3 The third and last part of the detailed Bartlett DOA estimation system. 
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Figure A.4 The detailed block diagram of the ADC controller. 
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APPENDIX B 
 
 

SYSTOLIC COMPUTER OPERATION EXAMPLE 
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Table B.1 The Addresses’ configurations of the first stage of the systolic computer. 
 
 

 
 

Table B.2 The Addresses’ configurations of the second stage of the systolic computer. 
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Table B.3 The Addresses’ configurations of the third stage of the systolic computer. 
 
 
 

 
 

Table B.4 The Addresses’ configurations of the fourth stage of the systolic computer. 



 
 

106 

 

 
Table B.5 The Addresses’ configurations of the final stage of the systolic computer. 

 


