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Abstract

To date, eight exotic toadXax-feeding insect species have been accidentally or intentionally introduced to North America. Reports on
their establishment and impact have been recorded for more than 60 years. Environmental risks linked to biological control of toadXax
were identiWed in terms of host resources and undesirable impacts on the target species through the critical review of this record. Data
gaps revealed during this retrospective analysis are addressed through suggestions for future research and associated experimental meth-
odologies. Known and potential impacts of toadXax-feeding insects on both invasive toadXax and non-target species are examined.
Recent programmatic demands for demonstrated agent eYcacy and stringent host selectivity during the prerelease screening process
clearly illustrate that classical biological control of invasive toadXax in North America is progressing beyond the so-called lottery
approach.
  2005 Elsevier Inc. All rights reserved.
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1. Introduction

Prerelease screening that evaluates biocontrol agent per-
formance, in terms of both eYcacy and agent behavior
(Arnett and Louda, 2002; Heard, 1999; Marohasy, 1998),
should reduce potential risks associated with the agent
when the agent is approved for release (Baars, 2000; Louda,
1998; SchaVner, 2001). Problems with the prerelease screen-
ing process for candidate agents, aside from the emphasis
on detecting non-target impacts at the expense of evaluat-
ing eYcacy (Kluge, 2000), arise from a multitude of meth-
odological issues that compromise the value of host
selectivity testing (Gassmann and Louda, 2001). Experi-
mental methods used in prerelease screening have been crit-
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icized for their lack of biological relevance (Withers, 1999),
thereby failing as adequate indicators of potential agent
performance in the release environment (Harris and McE-
voy, 1995). Furthermore, unresolved taxonomic issues
related to both the candidate agents and their targets have
led to the approval of ineVective or inappropriate agents
(Crawley, 1989; Myers and Bazely, 2003; Thomas and Wil-
lis, 1998). Because prerelease screening tests are so narrowly
focused on reducing the potential risk of non-target
impacts, risks associated with an incomplete knowledge of
agent’s potential performance in the treated ecosystem are
signiWcantly increased (Howarth, 2000).

Risks associated with the introduction of exotic weed
biocontrol agents fall under two broad categories: (1) when
the agent causes unintended and deleterious impacts to
non-target species, and (2) when the agent fails to reduce
populations of, or causes undesired impacts on, the target
weed. Non-target impacts stem primarily from taxonomic
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uncertainty with regard to the target weed and the
unknown degree of relatedness it shares, in terms of host
acceptance and suitability, with closely related native, inva-
sive or non-native ornamental relatives (van Klinken,
2000). Apart from the obvious undesired outcome of being
ineVective, weed biocontrol agents may actually enhance
weed Wtness through inadequate herbivory or other ecolog-
ical activities. Examples of herbivore-associated undesired
impacts to weed species targeted for biological control may
include: tolerance of herbivory (Strauss and Agrawal,
1999); compensatory growth responses to herbivory
(Trumble et al., 1993); facilitation of sexual reproduction
through pollination (Barthell et al., 2001; Goulson and
Derwent, 2004); production of allelopathic exudates in
response to herbivory (Callaway et al., 1999; Thelen et al.,
2005); and semiochemical signaling to herbivore natural
enemies (Paré and Tumlinson, 1999).

EYcacious biocontrol agent(s) have been successfully
identiWed, screened, approved, and released against a num-
ber of exotic weed species targeted in long-term classical
biological control programs (Coombs et al., 2004; Crawley,
1989; Mason and Huber, 2002; Story, 1992). Unfortunately,
many agents have been released with little or no documen-
tation of impact on target weed populations (Crawley,
1989; Kluge, 2000; McEvoy and Coombs, 1999; Syrett
et al., 2000). At the same time, examples of non-target
impacts have been widely publicized (Follett and Duan,
2000; Howarth, 1991; Louda et al., 1997; Pearson and Call-
away, 2003; SimberloV and Stiling, 1996; Wajnberg et al.,
2001). The resulting concerns over biological control safety
necessitate new and more careful approaches to prerelease
testing. Retrospective assessments of weed biological con-
trol can function as an exercise in accountability by consol-
idating and synthesizing all known information on agent
interactions with target and non-target species, providing a
systematic basis for identifying signiWcant data gaps, partic-
ularly those concerning non-target impacts, and can be use-
ful in improving speciWc aspects of future biocontrol
enterprises (Gassmann and Louda, 2001; Hopper, 2001).

Dalmatian toadXax, Linaria dalmatica (L.) Miller, and
yellow toadXax, L. vulgaris (Scrophulariaceae), are short-
lived perennial herbs of Eurasian origin (Alex, 1962; Saner
et al., 1995; Vujnovic and Wein, 1997). Dalmatian and yel-
low toadXax are widely distributed throughout North
America. Between the two species, invasive toadXax popu-
lations occur in all US states except Hawaii (USDA-NRCS,
2004) and all Canadian provinces (Saner et al., 1995; Vuj-
novic and Wein, 1997). Three toadXax-feeding insect spe-
cies are thought to have been adventitiously introduced on
horticultural specimens of these weeds: the Xower-feeding
beetle, Brachypterolus pulicarius (L.) (Coleoptera: Kateri-
dae), and two seed-capsule feeding weevils, Rhinusa (for-
merly Gymnetron) antirrhini Paykull, and R. neta Germar
(Coleoptera: Curculionidae) (Smith, 1959). Classical bio-
logical control of exotic toadXax in North America was
Wrst initiated in the 1960s with the intentional introduction
of Wve agents following host-speciWcity screening. These
were: a foliar-feeding moth, Calophasia lunula Hufnagel
(Lepidoptera: Noctuidae) (introduced in 1965); two root-
boring moths, Eteobalea serratella Treitschke and E. inter-
mediella Riedl (Lepidoptera: Cosmopterigidae) (1995); a
root-galling weevil, Rhinusa linariae Panzer (Coleoptera:
Curculionidae) (1995); and a stem-mining weevil, Mecinus
janthinus Germar (Coleoptera: Curculionidae) (1995)
(DeClerck-Floate and Harris, 2002; Harris, 1984; Harris
and Carder, 1971; McClay and Declerck-Floate, 2002).

Progress in the biological control of exotic toadXax in
North America has been reported for more than 50 years
(Smith, 1956). This record provides an excellent opportu-
nity for retrospective analysis as a relevant and informative
case study for identifying potential risks and beneWts of
biological control (Hopper, 2001; Louda et al., 2003). The
following evaluation serves Wrst as a review of documented
examples that conWrm existing problems in the prerelease
screening of toadXax biocontrol agents. In addition, this
critique examines how new methods of investigation may
potentially enhance the prerelease evaluation process by
identifying potential undesired impacts on the target spe-
cies. Specialized spatial and ecological statistical methods
are discussed as analyses that could be performed to
enhance risk/beneWt assessments for situations where there
is some indication that biocontrol beneWts might be con-
founded by ecological risks associated with the introduc-
tion of a candidate agent.

1.1. Known and potential risks: host resources

1.1.1. Identity crisis: target weed taxonomic and genotypic 
uncertainty

Consensus on the taxonomic designation of invasive,
exotic toadXaxes has been elusive. Dalmatian toadXax has
been treated both as a subspecies of broomleaf toadXax,
(Linaria genistifolia (L.) P. Mill.), L. genistifolia (L.) Miller
ssp. dalmatica (L.) Maire & Petitmengin (Chater et al.,
1972), and as a species entity (L. dalmatica (L.) Miller) com-
pletely separate but closely related to L. genistifolia (Davis,
1978; Hartl, 1974; Sutton, 1988). Canadian weed biocontrol
researchers consider these two species so closely related as
to use the common name “broad-leaved Dalmatian toad-
Xax” to denote L. dalmatica (L.) Mill., and “narrow-leaved
Dalmatian toadXax” for L. genistifolia (Harris and DeCl-
erck-Floate, 2003).

The USDA, NRCS PLANTS database currently lists
the species Linaria dalmatica (L.) P. Mill. with two subspe-
cies: spp. dalmatica and spp. macedonica (Griseb.) D.A. Sut-
ton, as separate from Linaria genistifolia, a species with one
variety, var. genistifolia (USDA-NRCS, 2004). Alex (1962)
similarly distinguishes two varieties (rather than subspe-
cies) of L. dalmatica, var. dalmatica and var. macedonica,
through a list of morphological characters. Alex (1962)
believed that L. dalmatica var. macedonica had a very
restricted indigenous range and therefore stated that North
American horticultural trade and botanical collection refer-
ences to this variety were incorrect. Today, the range of
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L. dalmatica ssp. macedonica in the United States is limited
to Wve states: Indiana, Iowa, Massachusetts, New Hamp-
shire, Oregon, and Washington (USDA-NRCS, 2004).
However closely they may be related, these two target weed
species (i.e., L. dalmatica and L. genistifolia) are thought to
be distinct enough to diVerentially inXuence biocontrol
agent eYcacy (Harris and DeClerck-Floate, 2003; Jean-
neret and Schroeder, 1991; Saner et al., 1990; Smith, 1959).
Final reports summarizing the results of host selectivity
testing of approved biocontrol agents, including R. anitr-
rhini (Groppe, 1992), E. intermediella and E. serratella
(Saner et al., 1990), and M. janthinus (Jeanneret and Sch-
roeder, 1991) show that in prerelease screening tests, the
Canadian biotype of L. dalmatica was not clearly identiWed
as broad- or narrow-leaved Dalmatian toadXax, but it was
treated as a separate entity from L. genistifolia.

Taxonomic ambiguity of the target weed can be further
complicated if conditions favor the evolution of novel
genotypes. The introduction of exotic plant species through
multiple events, times, and locations, especially those spe-
cies with extensive home ranges, can lead to the evolution
of novel genotypes in the adopted environment (Ellstrand
and Schierenbeck, 2000; Müller-Schärer and Steinger,
2004). Dalmatian and yellow toadXax owe their wide distri-
bution and long history of establishment in North America
to repeated introductions by settlers who valued both spe-
cies as garden ornamentals and as key ingredients in medic-
inal and textile-dying preparations (Lajeunesse, 1999).

Hybridization between previously isolated species or
subspecies can also produce novel genotypes (e.g., Gaskin
and Schaal, 2002). Both L. dalmatica and L. vulgaris are
self-incompatible (Docherty, 1982; Saner et al., 1995; Vuj-
novic and Wein, 1997). The frequency of hybridization
within the Linaria is thought to be fairly high, although the
occurrence of hybridization between L. dalmatica and L.
vulgaris has not been recorded (Bruun, 1937; Janko, 1964;
Olsson, 1974, 1975). O’Hanlon et al. (1999) suggest that in
cases where genetic diversity in invasive weeds has been
conWrmed, management tactics, including biological con-
trol, should be evaluated for eYcacy across the full range of
target weed diversity. Furthermore, classical biological con-
trol of exotic weeds can be signiWcantly confounded when
the target species has evolved into a hybrid complex that
has become critically dissimilar to hosts in the native range
from which candidate agents would be collected, exempli-
Wed by biocontrol of Lantana camara in South Africa
(Baars, 2000).

1.1.2. Taxonomic uncertainty: native North American 
Scrophulariaceae

Recent taxonomic revisions within the Wgwort family,
Scrophulariaceae (Albach et al., 2005; Olmstead et al.,
2001), indicated that Old World Linaria spp., such as Dal-
matian and yellow toadXax, are more closely related to
New World Sairocarpus (formerly New World Antirrhi-
num) (ITIS, 2004), Maurandya, and Penstemon spp. than
previously assumed (Hansen and Gassmann, 2002). The
same revision reclassiWed three former New World Linaria
and determined that they belonged in their own genus, Nut-
tallanthus D.A. Sutton: N. canadensis (L.) , N. Xoridanus
(Chapman), and N. texanus (Scheele) (BONAP, 1996; ITIS,
2004). Taxonomic ambiguity at the time of initial prerelease
host-speciWcity screening for the majority of established
toadXax agents therefore resulted in the omission of key
related native North American species from evaluation.
Post-release host speciWcity tests conducted to address the
potential for M. janthinus (Gassmann, 2001; Hansen and
Gassmann, 2002), C. lunula (R.W. Hansen, unpublished
data), and R. neta (Gassmann, 2001) to attack non-target
native North American Scrophulariaceae revealed that
although non-status native plant species were found to be
susceptible to attack, no native threatened or endangered
Wgworts were at risk.

Results of choice tests with M. janthinus conducted to
assess the agent’s potential to attack North American
Scrophulariaceae indicated that one native North Ameri-
can species with a distribution limited to California
(USDA-NRCS, 2004), Sairocarpus virga (Gray) D.A. Sut-
ton, as being fully capable of supporting larval develop-
ment of M. janthinus, although signiWcantly fewer progeny
were produced on this non-target host than on Dalmatian
toadXax (Hansen and Gassmann, 2002). Under a conserva-
tive, Tier I risk assessment, the eVect threshold or unaccept-
able level of risk for host-switching would be the successful
production of agent progeny on any non-target plant spe-
cies. A risk characterization of the potential for M. janthi-
nus to impact S. virga beyond the acceptable critical eVects
threshold would require Wlling a number of data gaps
( D ecological criteria sensu Arnett and Louda, 2002). This
process might include determining: the phenologies of Dal-
matian toadXax, S. virga, and M. janthinus under local envi-
ronmental inXuences; the relative densities and spatial
distribution of the two host plant species; M. janthinus dis-
peral, feeding, and oviposition patterns under local condi-
tions; and the impact of stochastic environmental
perturbations that may potentially inXuence M. janthinus
host use and acceptance patterns (i.e., wildWre, spray pro-
grams, atypical climatic events). Because M. janthinus
remains the best available agent for Dalmatian toadXax
biocontrol and this invasive weed is of signiWcant concern
in California (CDFA, 2005; Sonder and Talbert, 1973), pol-
icy makers might decide to conduct a risk assessment con-
strained by a less conservative host-switching eVects
threshold. In that case, further investigation would have to
be undertaken to determine if M. janthinus acceptance of S.
virga for oviposition is novel, if the agent demonstrates host
preference, or if agent exploitation of the non-target or tar-
get host is inXuenced by the relative abundance or spatial
distribution of either species.

According to the Jepson Flora Project (http://
ucjeps.bereley.ecu/jepson_Xora_project.html), an online
resource for Californian Xoristic evaluations, L. dalmatica
and S. virga have known overlapping distributions, in the
context of being equally accessible to mobile M. janthinus
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adults, in at least two California Xoristic provinces. When
two or more acceptable host species are present, herbivore
preference for one species over another (electivity sensu
Singer, 2000) can be evaluated by determining if the num-
ber of individuals of one plant species attacked by the her-
bivore species is proportionate to its relative density (Cock,
1978), by adapting the methods outlined in Murdock
(1969).

1.1.3. Alternative host issues: related non-native weedy and 
ornamental species

Host-selectivity screening for the majority of toadXax
biological control agents has included individuals of the
target species drawn from both the native and adopted
range (Gassmann and Paetel, 1998; Groppe, 1992; Jean-
neret and Schroeder, 1991; Saner et al., 1990). Increased
genetic variability within exotic invasive plant populations,
especially those species with domesticated (i.e., ornamental)
and wild counterparts, may confound herbivore host selec-
tion (Chen and Welter, 2003). Several non-native species
within the genus Linaria are now considered to be natural-
ized, according to the USDA 1982 National List of Plant
Names (Jeanneret and Schroeder, 1991), and frequently
appear as test species in host-selectivity evaluations of can-
didate toadXax biocontrol agents. One of those, dwarf
snapdragon, Chaenorrhinum minus (L.) Lange ( D L. minor
(L.) Lange), is an annual that has received minor attention
in the host-screening process for toadXax biological control
agents. This is because most agents are thought to be pre-
dominantly associated with short-lived perennials,
although this degree of host longevity is not required for
every toadXax biocontrol agent species. Additionally, the
cost of attack on naturalized, non-native ornamental Lina-
ria was deemed to be acceptable collateral damage, com-
pared to the beneWts to be garnered from the eVective
management of yellow and Dalmatian toadXax: “reduction
in the abundance of roadside toadXax Xowers is a price that
must be paid for control by biological or other means”
(Saner et al., 1990, p. 19; Jeanneret and Schroeder, 1992, p.
17).

Host speciWcity of R. neta (Rhine Valley origin) evaluated
through a multiple-choice oviposition and larval develop-
ment experiment indicated that the greatest number of
pupae and adults were produced on the native range host, L.
vulgaris (EU origin), followed by the annual species, Chae-
norrhinum minus (Gassmann and Paetel, 1998). Chaenorrhi-
num minus was introduced and disseminated throughout
North America in ballast material that was in turn used as a
foundation for transcontinental railway beds (Arnold, 1981,
1991; Widrlechner, 1982). Due to its ubiquitous distribution
along transportation corridors, a species such as C. minus
could provide a means for agents to come into contact with
potential native non-target hosts thought to be secure from
attack by toadXax biocontrol agents due to their allopatric
distribution with L. dalmatica or L. vulgaris. The potential
role of such “bridge” alternative host species in non-target
attack probably merits consideration in the preparation of
comprehensive risk assessments in weed biological control
(Louda et al., 2003; Pemberton, 1985).

Another example of non-target feeding by a toadXax
biocontrol agent on naturalized non-native, related orna-
mental species involves the larval stage of the toadXax defo-
liating moth C. lunula, which readily feeds (Karny, 1963)
and completes development (Harris, 1963) on three orna-
mental species: common snapdragon or Antirrhinum majus,
Cymbalaria muralis, and Linaria maroccana. Two of these,
A. majus and L. maroccana, have become “weedy” escaped
ornamentals in several US states, including California
(USDA-NRCS, 2004). In this context, both the target
weed(s) and a common ornamental, A. majus, could func-
tion as alternative hosts by sustaining localized populations
of C. lunula within the geographic range of a potential
native non-target host species, S. virga.

An exposure assessment, taking into consideration the
following temporal and spatial factors, would clarify the
risks of host-switching by yielding a “dose response” for C.
lunula encounters with all three plant species: relative abun-
dance and frequency of spatial and temporal co-occurrence
of the target host(s), the “weedy” ornamental non-target
host and the putative native non-target host, and degree of
phenotypic synchrony/asynchrony between the agent and
target/non-target hosts. A risk assessment of toadXax bio-
logical control for California would need to weigh the risks
of agent host switching, especially confounded by the fre-
quency that common snapdragon is used and escapes as an
ornamental plant, against the need for eVective Dalmatian
toadXax biological control. Host-screening of S. virga for
C. lunula host acceptance and host suitability demonstrated
that although C. lunula completed development on S. virga
in the lab, survival, and “performance” (e.g., development
time, pupal weight) were signiWcantly less than that on L.
dalmatica or L. vulgaris (Hansen, unpublished data). Given
the continuous distribution of L. dalmatica and L. linaria
throughout much of the United States and Canada, com-
plete geographic separation of invasive and native or intro-
duced ornamental toadXaxes seems unlikely.

1.1.4. Biotypes or host-race considerations: toadXax 
biocontrol agents

Geographical separation can result in populations of
herbivorous insect species that preferentially exploit diVer-
ent host species, host races that arise as a manifestation of
adaptive ecological diVerentiation. Host race has been char-
acterized by genetic, behavioral, or combined genetic and
behavioral diVerentiation (Craig et al., 1993, 2000; Diehl
and Bush, 1984; Drès and Mallet, 2002; Hopper et al., 1993;
Narang et al., 1993). Drès and Mallet (2002) point out that
the deWnition of “host race” is elusive, and that conferring
the status of “host race” is a subjective categorization of
“one of a number of intermediates in the continuum
between polymorphisms and full species.”

The steppes of southeastern Europe and southwestern
Asia form the native range of Linaria vulgaris (Saner et al.,
1995), while L. dalmatica is thought to originate in the
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Mediterranean region, reportedly from Yugoslavia to Iran
(Vujnovic and Wein, 1997). The host race argument has
been used to support the petition and subsequent release of
host speciWc biotypes of two toadXax agents, Rhinusa antir-
rhini and Brachypterolus pulicarius, and a number of studies
have investigated the possibility that geographically dispa-
rate populations of certain toadXax biocontrol species
occurring on both L. dalmatica and L. vulgaris may have
evolved distinct host races in response to the locally preva-
lent Linaria species (Groppe, 1992; Harris and Gassmann,
2004; Hering, 2002; Nowierski, 1995; Smith, 1959).

The adventively introduced agent Rhinusa antirrhini,
reported as widely distributed on L. vulgaris and the nar-
row-leaved form of L. dalmatica, was thought to be incapa-
ble of successful reproduction on broad-leaved L.
dalmatica (Smith, 1959). Because qualitative assessments
attributed a reduction in L. vulgaris seed production to R.
antirrhini (Darwent et al., 1975; Harris, 1961), foreign
exploration was undertaken to identify collectable popula-
tions of L. dalmatica-adapted R. antirrhini in the species’
native range. Weevils collected from Dalmatian toadXax in
Yugoslavia (Groppe, 1992) were initially released in Can-
ada in 1993 (DeClerck-Floate and Harris, 2002). The L.
dalmatica host race of R. antirrhini was released in the US
in 1996 following an environmental assessment with a Wnd-
ing of no signiWcant impact (Nowierski and Hennessey,
1995).

McClay and Declerck-Floate (2002) suggest that a
reduction in the eYcacy of the yellow toadXax host race of
Rhinusa antirrhini may be attributed to a European parasit-
oid, Wrst reported in the same year as the initial US release
of the L. dalmatica host race of R. antirrhini (Volenberg
and Krauth, 1996). Furthermore, Harris and Gassmann
(2004) contend that L. dalmatica-adapted R. antirrhini are
not a host race but in fact a separate, unnamed sibling spe-
cies of Rhinusa as evidenced by their signiWcantly diVerent
mitochondrial DNA proWles. Hopper et al. (1993) discuss
how a genetic diagnosis can reveal that an assumed intra-
speciWc variation among insect species strains, for example,
the development of host speciWcity for diVerent plants, is
actually a case of genetic variation among sibling species.
Permitting a new species of weed biocontrol agent to
bypass intensive pre-release screening because it was
assumed to be a host race of a previously intentionally or
adventively introduced species can create the potential for a
number of negative ecological and regulatory repercus-
sions.

Field performance of a second insect species, Brachyp-
terolus pulicarius, was thought to support the notion that
host aYnity evolving toward separate host races on Linaria
vulgaris and L. dalmatica had occurred in this species
(Grubb et al., 2002). Smith (1959) reported that B. pulica-
rius was found only on L. vulgaris hosts growing in a gar-
den of potential Scrophulariaceae hosts at the Canadian
Department of Agriculture Entomology Laboratory in
Belleville, Ontario. The same account also mentions that
this insect species had also been collected from broad-
leaved Dalmatian toadXax at two locations in Saskatche-
wan (Smith, 1959). In 1992, B. pulicarius collected from L.
dalmatica in Kamloops, B.C. were released on Dalmatian
toadXax at three sites in Montana, then conWrmed as estab-
lished the following year (Nowierski, 1995). AmpliWed
Fragment Length Polymorphism (AFLP) analysis of B.
pulicarius populations collected throughout the native and
adopted ranges found no evidence to suggest that genetic
variability between the host races had advanced to the
point of speciation (Hering, 2002).

The concerted campaign to release Dalmatian toadXax-
adapted B. pulicarius and R. antirrhini in North America
exempliWes the “lottery approach” to biological control
which may build unnecessary complexity and non-target
risk into biocontrol systems (McEvoy and Coombs, 2000).
Although B. pulicarius delays Xowering and seed produc-
tion in L. vulgaris (McClay, 1992), it has not truly changed
the scope or prevalence of problems associated with this
invasive weed (McClay and Declerck-Floate, 2002). If
agent eYcacy is modest for the ubiquitous, adventively
introduced yellow toadXax host races of these two seed-tar-
geting agents against L. vulgaris hosts producing an aver-
age of 5584 seeds/stem (Zilke and Coupland, 1954), how
could an even equal impact be anticipated against Dalma-
tian toadXax, with an average seed production of 50,000
seeds/stem(Saner et al., 1995)? Both of these agents are
seed-feeders with little or no potential to aVect meaningful
top-down control of the target weed (McEvoy and Coo-
mbs, 1999). Because the more recently introduced agent
host races were not selected to improve host–herbivore cli-
mate matching, it seems fair to suggest that the past perfor-
mance of the yellow toadXax host races of these agents
should have Wgured more prominently in the decision to
approve and release the L. dalmatica agent host races.
Finally, aside from the marginal impact of these agents on
the persistence of target weed populations, the decision to
import Dalmatian toadXax host races of these two agents
should have been reconsidered, based on Harris’ (1961)
description of the antagonistic interactions between B. puli-
carius and R. antirrhini on L. vulgaris. This account pre-
sents a classic example of intra-guild predation (Rosenheim
et al., 1995), with the two species competing for the same
host resources, and their combined eVorts thought to be
additive, but below the level of seed destruction necessary
to suppress populations of the weed (Harris, 1961).

1.2. Known and potential undesired impacts on the target 
weed

1.2.1. Tolerance of herbivory
In weed biological control, impact has largely been mea-

sured in terms of agent and host demography in isolation,
rather than in concert (McClay, 1995; Syrett et al., 2000).
This approach relies heavily on correlative rather than
causal explanations for reductions in target weed popula-
tions (McEvoy and Coombs, 1999). Quantitative studies
most frequently address units (i.e., above- or below-ground
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biomass, leaves, seedheads, etc.) of host consumption per
time interval (Karny, 1963; McClay, 1995). To date, studies
of toadXax biocontrol eYcacy have only speculated on spe-
ciWc mechanisms involved in diVerential resource allocation
to vegetative versus reproductive structures, extrapolating
this to the population level (Carney, 2003; Grubb et al.,
2002; Müller, 1989; Saner et al., 1990; Schierenbeck et al.,
1994).

Experimental results conWrm that biomass removal has
little sustained impact on well-established infestations of L.
vulgaris (Alberta Agriculture, 1988; Saner et al., 1995) or L.
dalmatica (Robocker et al., 1972; Vujnovic and Wein,
1997). Weed species with dual modes of reproduction,
including yellow and Dalmatian toadXax, are particularly
resilient to simple biomass reduction (Lajeunesse, 1999).

Successful biological control of invasive weeds with her-
bivorous, host-speciWc insects is predicated on the assump-
tion that insect-induced injury stresses the weeds
suYciently to cause critical reductions in individual Wtness
and thereby, weed populations. Plant primary physiological
processes such as photosynthesis, stomatal conductance,
transpiration, chlorophyll Xuorescence, and respiration are
crucial determinants of plant growth, yield, and Wtness
(Meyer, 2000, 1993). However, speciWc information on the
physiological response of invasive weeds to insect herbiv-
ory, as a mechanistic explanation of agent eYcacy, is rela-
tively rare (but see Overholt et al., 2004; McConnell et al.,
1995). Understanding plant physiological responses to
select herbivory and tracking the impact of those responses
on the weed’s population and community dynamics could
potentially provide a quantitative and systematic method
for evaluating agent eYcacy (Arntz et al., 1998).

Field studies conducted at sites where releases of the
toadXax stem-mining weevil, M. janthinus, had previously
established revealed that Dalmatian toadXax physiology
was signiWcantly altered in plants infested by the biological
control agent, compared to uninfested neighboring plants
(Peterson et al., 2005). In particular, photosynthesis and gas
exchange traits such as stomatal conductance, intercellular
CO2, and transpiration were signiWcantly lower in infested
compared to uninfested plants. These results suggest that
measurable correlates of the status of primary metabolic
functioning in Dalmatian toadXax are impacted by this bio-
control agent and may explain its eYcacy in controlling the
target weed (Carney, 2003; DeClerck-Floate and Miller,
2002; Jeanneret and Schroeder, 1992). In greenhouse and
Weld evaluations, gas exchange variables were recorded on
Dalmatian toadXax plants subjected to simulated defolia-
tion by clipping or herbivory by C. lunula larvae, for com-
parison to untreated plants. Plants where C. lunula injury
was simulated by clipping portions of leaves with scissors
had no diVerent response than those subjected to herbivore
defoliation or left untreated. These results suggest that
toadXax agents with a simple defoliation mode of action
are unlikely to impact toadXax primary metabolism (i.e.,
photosynthesis, stomatal conductance, transpiration, and
intercellular CO2). Larval defoliation by C. lunula reduced
leaf area, but did not apparently impact the photosynthetic
apparatus of remaining tissue. Although adult M. janthinus
defoliated a much smaller leaf area per experimental plant
than plants under attack by C. lunula larvae, a signiWcant
depression in primary physiological functioning could be
linked to the disruption of xylem tissues by the feeding
activities of larval M. janthinus. While primary physiologi-
cal responses are not intended to be predictors of plant
Wtness, they can be used to assess physiological impairment
that may lead to Wtness loss. M. janthinus exerted the
greater impact on L. dalmatica primary metabolic function-
ing and can be credited with reducing Dalmatian toadXax
infestations at a number of western North American loca-
tions (S.E. Sing, pers. obs.; DeClerck-Floate and Harris,
2002); in spite of its wider distribution and longer tenure in
North America, C. lunula has not had much of an impact
on target weed populations (Nowierski, 2004).

Using similar methods to diagnose in situ plant primary
physiological responses to herbivory by speciWc agents dur-
ing the initial phases of the candidate screening process in
the target weed’s native range. This approach could poten-
tially provide a quantitative and systematic method for
evaluating agent eYcacy. Because eVective biological con-
trol of weeds generally depends more on compromising the
competitive ability of the target species than on “killing” or
“eating” populations to local extinction, objective, quantiW-
able indicators of agent-mediated physiological stress could
have a useful role in identifying appropriate candidate
agents.

1.2.2. Compensatory responses to herbivory
Gross biomass removal is the coarsest resolution of

agent impact on a target weed. Attack on L. vulgaris by the
root-mining larvae of the moth E. serratella increased vege-
tative growth, doubling the number of stems in host plants,
although total biomass was not found to be signiWcantly
diVerent when infested (attacked) and uninfested plants
were compared (Saner and Müller-Schärer, 1994). How-
ever, assessments of root herbivory impact based solely on
biomass reduction do not account for an indirect but major
impact of root-feeding weed biological control agents: facil-
itation of pathogenic attack on the target weed through
entry points created by herbivore activities such as feeding,
oviposition or tunnelling (Caesar, 2000).

Dalmatian toadXax plants attacked by the ovary- and
pollen-feeding beetle B. pulicarius were shorter in stature
and also exhibited increased primary and secondary
branching (Grubb et al., 2002). Brachypterolus pulicarius
attack on yellow toadXax also resulted in auxiliary branch-
ing (Selleck et al., 1957) but with no attendant reduction in
dry weight or root/shoot ratio (McClay, 1992). In general,
results pertaining to toadXax’s vegetative growth indicate
that although there was an increase in the number of host
stems or shoots in herbivore-exposed plants, total biomass
was generally not altered. Analyzing this agent’s impact
from a community perspective suggests that because
aVected plants did not lose biomass or size, herbivory may
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have actually increased the target weed’s competitive
advantage, in terms of the limiting resource of space, at no
apparent cost in moisture and nutrient capture.

1.2.3. Herbivore-mediated impacts on weed sexual 
reproduction and self-defense

Stand persistence, a measure of Wtness at the population
level in perennial weed species such as yellow toadXax with
both sexual and asexual modes of reproduction, is attributed
more to vegetative growth rather than sexual reproduction
(Honnay and Bossuyt, 2005; Nadeau and King, 1991; Olej-
niczak, 2003; Rautiainen et al., 2004). Although individual
plants may produce up to an estimated 33,000 seeds (Kock,
1966), yellow toadXax seedling establishment is constrained
by low seed viability and high seed dormancy (Nadeau and
King, 1991). Biocontrol agents focusing their attack on toad-
Xax pollen and ovaries impact host Wtness at the level of the
individual by reducing the probability that the individual’s
genetic material will be carried on to subsequent generations
through pollination (Arnold, 1982). Grubb et al. (2002) sug-
gest that because B. pulicarius aVects host reproductive allo-
cation and seed production, and thereby opportunity and
potential for propagule dispersal, it indirectly but signiW-

cantly impacts the possibility for rapid adaptation due to
uniparental constraint (Holsinger, 2000), which could result
in local extinction (Honnay and Bossuyt, 2005).

The regulatory role of herbivory-induced volatile pro-
duction in tri-trophic relations has been well-documented
(Kessler and Baldwin, 2001; Turlings et al., 1995). Plant sec-
ondary metabolism involves the stress-induced activation
of biochemical pathways thought to be driven by a long-
standing co-evolution of the plant species with select biotic
stressors. The purpose of elicited responses is to stem the
continuation of further stress, and to limit or eliminate the
impacts of existing stress to aVected plants (Alborn et al.,
1997; Röse et al., 1996; Paré and Tumlinson, 1997, 1998;
Paré et al., 1998). The release of volatile compounds from
plants attacked by biocontrol agents could doom agent
eVectiveness if the compounds served to attract predators
that reduce agent Wtness.

A portable volatile collection system was used to deter-
mine if the volatile signature diVered in Dalmatian toadXax
plants free of natural enemies or actively under attack by
either M. janthinus or C. lunula at well-established release
sites where agents were consistently present. Volatile com-
pounds eluted from the sample Wlters were identiWed and
quantiWed through GC–MS analysis, which determined the
retention time and identity of speciWc plant compounds.
Volatile peaks present at two retention times indicated the
presence of diVerential amounts of two compounds—one,
identiWed as junipene, was present only in uninfested Dal-
matian toadXax (Fig. 1A) and the other, geranylacetone,
was collected only from M. janthinus infested plants
(Fig. 1B).

Junipene is an attractant component of Xoral and vege-
tative volatiles produced in plant species pollinated by
night-active noctuid moths (Levin et al., 2001). Geranylace-
tone is a wound-response “alarm” volatile that functions as
an attractant to herbivore natural enemies (Boland et al.,
1998). Calophasia lunula moths feed on toadXax nectar
beginning at dusk and probably pollinate the Xowers dur-
ing the course of nocturnal feeding and egg-laying (Karny,
1963). Calophasia lunula larvae experience a high rate of
parasitism at some North American biocontrol release sites
(McClay and Hughes, 1995). These factors suggest that the
degree of coevolution in this host–herbivore system may
doom anthropogenic manipulation for weed population
regulatory purposes (Mauricio and Rausher, 1997). Further
evaluations will be necessary to conclusively determine that
C. lunula facilitates pollination in its self-incompatible host
species.

2. Discussion

A number of toadXax biocontrol agents have been
approved and released in North America (Table 1), even
though their fundamental host range (van Klinken, 2000;
Nechols et al., 1992) includes native North American or
common ornamental species. Host-speciWcity tests indicate
that in general, the frequency and intensity of attacks on
non-target hosts were lower, and the incidence of com-
pleted development through the entire reproductive cycle
was low or rare. Also rates of development were generally
protracted when compared to agent performance on target
weed hosts. However, the case study of the musk thistle bio-
control agent Rhinocyllus conicus (Frölich) illustrates that
indicators of non-target risk should not be discounted
(Louda, 2000; Louda et al., 2005). Because prerelease tests
indicated that R. conicus preferred Carduus spp. hosts and
developed more slowly on Cirsium spp., the risk posed to
native thistles was promoted as insigniWcant compared to
the problem of invasive thistles (Zwölfer and Harris, 1984).

The decision to monitor plant species that had been
identiWed as potential but not probable non-target hosts
(Rees, 1977; Turner et al., 1987) was key to accurately char-
acterizing R. concicus’ realized or Weld host range (van
Klinken, 2000). Increased monitoring, especially of poten-
tial but improbable non-target hosts (as indicated through
prerelease host-selectivity testing), would accurately delin-
eate the Weld host range of the current suite of toadXax bio-
control agents. Ideally, the parameterization of toadXax
agents’ Weld host range would include ecological evalua-
tions of target and non-target host use based on the relative
abundance, and temporal or spatial distribution patterns of
co-occurring potential host species (McClay, 1995; Syrett
et al., 2000).

The use of plant taxonomy in host-speciWcity testing suc-
ceeds or fails depending on the accuracy with which phylo-
genetic relationships are characterized (Futuyama, 1999).
As a result of recent taxonomic revisions within the
Scrophulariaceae, a number of native species have been
identiWed as potential hosts to toadXax biocontrol species, a
development that could not have been anticipated at the
time that the majority of the agents were approved for
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release in North America. However, the decision to evalu-
ate the susceptibility of these recently identiWed native spe-
cies to approved or adventively introduced agents
(Gassmann, 2001) exempliWes the proactive stance taken by
toadXax biocontrol researchers to Wlling existing data gaps
as they emerge.
Table 1
Exotic toadXax-feeding insect species released or reported in the U.S.

a For accidentally introduced agents, date indicates earliest US record.
b Target host: *indicates host in native range but limited use in North America.
c M. janthinus adult impact ranges from minimal to signiWcant, depending on agent density.
d Impact unknown in US because establishment of agent unknown.

Agent Mode of introduction Target host Injurious stage(s) Target organ(s) Impact on Target
Datea US populationsd

Current distribution
Brachypterolus pulicarius Accidental L. vulgaris Adult Shoots Minimal
(Coleoptera: Kateridae) 1919
L. vulgaris host race Common Larvae Flowers Minimal

Seeds

Brachypterolus pulicarius Intentional L. dalmatica Adult Shoots Minimal
(Coleoptera: Kateridae) 1992
L. dalmatica host race Limited Larvae Flowers Minimal

Seeds

Rhinusa antirrhini Accidental L. vulgaris Adult Seeds Minimal
(Coleoptera: Curculionidae) 1909
L. vulgaris host race Common Larvae Seeds Minimal

Rhinusa antirrhini Intentional L. dalmatica Adult Seeds Unknown
(Coleoptera: Curculionidae) 1996
L. dalmatica host race Unknown Larvae Seeds Unknown

Calophasia lunula Intentional L. dalmatica Larvae Foliage Minimal
(Lepidoptera: Noctuidae) 1960’s L. vulgarisb

Common Larvae Foliage Minimal

Rhinusa linariae Intentional L. dalmatica Adult Shoots Unknown
(Coleoptera: Curculionidae) 1996 L. vulgaris

Unknown Larvae Roots Unknown

Eteobalea serratella Intentional L. vulgaris Larvae Roots Unknown
(Lepidoptera: Cosmopterygidae) 1996

Unknown

Eteobalea intermediella Intentional L. dalmatica Larvae Roots Unknown
(Lepidoptera: Cosmopterygidae) 1996 L. vulgaris

Unknown

Mecinus janthinus Intentional L. dalmatica Adult Foliage Density-dependentc

(Coleoptera: Curculionidae) 1992 L. vulgarisb

Limited Larvae Internal stem SigniWcant
Fig. 1. Mean values for volatiles produced by L. dalmatica: (a) uninfested and (b) infested with larval Mecinus janthinus. (A) Junipene collected from unin-
fested Dalmatian toadXax; volatile absent in plants infested by larval Mecinus janthinus. (B) Geranylacetone collected from infested Dalmatian toadXax;
volatile absent in plants free of larval Mecinus janthinus.
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Preliminary results discussed above suggest that experi-
mental methods for detecting diVerential species-speciWc
responses to herbivores in host plant primary and second-
ary metabolic functioning might be appropriately used to
reWne the initial screening process for identifying eVective
candidate agents. Increasing the complexity and duration
of overseas evaluations of candidate agents, especially if
realistic Weld conditions can be approximated, would
improve the odds that truly eYcacious agents would be
selected. Repeated measurements of insect and vegetation
parameters taken at the same spatially registered locations
and over the span of multiple Weld seasons appropriately
attribute weed reduction to biocontrol eYcacy (Pauchard
et al., 2003); otherwise observed decreases in toadXax abun-
dance and percent cover can only speculatively be attrib-
uted to the work of a biocontrol agent (Darwent et al.,
1975; McClay, 1995).

Mecinus heydeni, a close relative of the stem-mining
weevil, M. janthinus, is currently being investigated for
potential deployment against Linaria vulgaris (R. DeCl-
erck-Floate, Agriculture and Agri-food Canada, Leth-
bridge Research Centre, personal communication). This
development signals an end to what appeared to be a pre-
vailing lottery approach to classical biological control of
toadXax in North America . Although the mechanistic
basis of M. janthinus’ success in controlling Dalmatian
toadXax remains unknown, its impact is obvious. By
selecting a closely related agent that is host-speciWc to yel-
low toadXax as the next candidate for screening, research-
ers have made an active choice based on past success. This
tactic, to evaluate an agent closely related to a species that
has demonstrated superlative control eYcacy against a
related target weed, marks a clear deviation from the pre-
vious, seemingly random approach taken to foreign
exploration for new toadXax biocontrol agents.

Weed biological control agents are too often deemed
“safe” because a number of assumptions are made with
regard to the target weed’s genetic, phenotypic, and geo-
graphical range in native and invasive ecosystems. Retro-
spective analyses, by synthesizing and summarizing all
available data associated with weed-specialist herbivore com-
plexes, help to identify speciWc issues emerging in established
biocontrol programs and improve future programs by pro-
viding a checklist of consistent patterns (Louda et al., 2003)
in ecological risks posed by classical biological control.
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