EELE 477 Digital Signal Processing 10b *z*-Transforms

Inverse and Deconvolution

- We have seen that two systems in cascade can be combined into a single system by multiplying $H_1(z)$ and $H_2(z)$.
- We can also take a system function H(z) and *factor* it into two or more low-order systems.
- Question: can we *divide* the system output by the system function ("deconvolve") and recover the input? γ

$$
Y(z) = H_1(z)X(z); \quad Y(z)H_2(z) = X(z)
$$

 $Y(z) = H_1(z)H_2(z)Y(z) \implies H_1(z)H_2(z) = 1?$

Inverse and Deconvolve, cont.

- If we can find $H₂(z)$, it is called the *inverse* of $H_1(z)$.
- NOTE that $H₂(z)$ will not be FIR if $H₁(z)$ is FIR.
- $H₂(z)$ may represent a non-causal and/or unstable system even if $H_1(z)$ is causal and stable.

Relating $H(z)$ and $H(e^{j\omega})$

• NOTE CAREFULLY: z-transform and frequency response formulae are of identical form.

$$
H(\hat{\omega}) = \sum_{k=0}^{M} b_k e^{-j\hat{\omega}k} \qquad H(z) = \sum_{k=0}^{M} b_k z^{-k}
$$

• If we evaluate $H(z)$ for $z=e^{j\omega}$, it is clear:

$$
H(\hat{\omega}) = H(e^{j\hat{\omega}}) = H(z)\big|_{z=e^{j\omega}}
$$

EELE 477 DSP Spring 2018 Maher

Properties of $Z=e^{j\omega}$

- Observe $z=e^{j\omega}$ for $-\pi < \omega < \pi$: $|z|=1$, phase= ϖ
- This defines a *circle* in the z-plane with radius=1: referred to as the *unit circle*

Visualizing Frequency Response

• We can observe z-transform along the unit circle to reveal the frequency response.

Poles and Zeros

- A *pole* in the z-domain is a value of *z* that "pushes up" the magnitude like a tent pole.
- A *zero* in the z-domain is a value of *z* that "pins down" the magnitude like a stake or tack.
- The pole and zero locations control the magnitude everywhere, *including along the unit circle*.

FIR Systems

- FIR systems contain only finite zeros. Poles are located at zero (and perhaps infinity).
- FIR filter design requires a careful choice of zero locations.
- Stop band has zeros on the unit circle.
- Pass band has zeros off the unit circle.

Matlab FIR Filter Design

- Matlab provides several FIR filter design tools, including: fir1, fir2, and remez
- Matlab GUI: Filter Design and Analysis Tool (FDATool)
- Usually specify passband ripple, stopband attenuation, band edges, filter order, and f_{s}

Design Example

Design Example (cont.)

EELE 477 DSP Spring 2018 Maher

Symmetry and Linear Phase

- FIR systems with symmetric coefficients $(b_k=b_{M-k})$ have frequency responses with *linear phase*.
- Show this by grouping z-transform terms, for example:

$$
H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + b_2 z^{-4} + b_1 z^{-5} + b_0 z^{-6}
$$

= $z^{-3} \Big[b_0 \Big(z^3 + z^{-3} \Big) + b_1 \Big(z^2 + z^{-2} \Big) + b_2 \Big(z^1 + z^{-1} \Big) + b_3 \Big]$

Linear Phase (cont.)

• Now evaluate H(z) on unit circle:

$$
H(e^{j\hat{\omega}}) = e^{-j3\hat{\omega}} \left[b_0 \left(e^{j3\hat{\omega}} + e^{-j3\hat{\omega}} \right) + b_1 \left(e^{j2\hat{\omega}} + e^{-j2\hat{\omega}} \right) + b_2 \left(e^{j\hat{\omega}} + e^{-j\hat{\omega}} \right) + b_3 \right]
$$

\n_{phase}
\n_{term}
\n
$$
a \text{ real function of } \hat{\omega} \text{ (phase=0)}
$$

• Example if M is odd:

$$
H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + b_2 z^{-3} + b_1 z^{-4} + b_0 z^{-5}
$$

= $z^{-2.5} \Big[b_0 \Big(z^{2.5} + z^{-2.5} \Big) + b_1 \Big(z^{1.5} + z^{-1.5} \Big) + b_2 \Big(z^{0.5} + z^{-0.5} \Big) \Big]$

Zero Symmetry

• For an FIR linear phase system (implies coefficient symmetry), the zeros will have a specific pattern. For each z_0 , there will be:

